Problem K. Zoning Houses

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Given a registry of all houses in your state or province, you would like to know the minimum size of an axis-aligned square zone such that every house in a range of addresses lies in the zone or on its border. The zoning is a bit lenient and you can ignore any one house from the range to make the zone smaller.
The addresses are given as integers from 1..n. Zoning requests are given as a consecutive range of houses. A valid zone is the smallest axis-aligned square that contains all of the points in the range, ignoring at most one.

Given the (x, y) locations of houses in your state or province, and a list of zoning requests, you must figure out for each request: What is the length of a side of the smallest axis-aligned square zone that contains all of the houses in the zoning request, possibly ignoring one house?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line containing two integers n and $q\left(1 \leq n, q \leq 10^{5}\right)$, where n is the number of houses, and q is the number of zoning requests.
The next n lines will each contain two integers, x and $y\left(-10^{9} \leq x, y \leq 10^{9}\right)$, which are the (x, y) coordinates of a house in your state or province. The address of this house corresponds with the order in the input. The first house has address 1 , the second house has address 2 , and so on. No two houses will be at the same location.

The next q lines will contain two integers a and $b(1 \leq a<b \leq n)$, which represents a zoning request for houses with addresses in the range $[a . . b]$ inclusive.

Output

Output q lines. On each line print the answer to one of the zoning requests, in order: the side length of the smallest axis-aligned square that contains all of the points of houses with those addresses, if at most one house can be ignored.

Examples

	standard input	
3	2	1
1	0	standard output
0	1	0
1000	1	
1	3	
2	3	
4	2	
0	0	
10001000		
300	300	
1	1	
1	3	
2	4	

