Problem F. Hilbert's Hotel

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	1024 mebibytes

Hilbert's hotel has infinitely many rooms, numbered 0, 1, 2, \dots At most one guest occupies each room. Since people tend to check-in in groups, the hotel has a group counter variable G.

Hilbert's hotel had a grand opening today. Soon after, infinitely many people arrived at once, filling every room in the hotel. All guests got the group number 0, and G is set to 1.

Ironically, the hotel can accept more guests even though every room is filled:

- If $k \ (k \ge 1)$ people arrive at the hotel, then for each room number x, the guest in room x moves to room x + k. After that, the new guests fill all the rooms from 0 to k 1.
- If infinitely many people arrive at the hotel, then for each room number x, the guest in room x moves to room 2x. After that, the new guests fill all the rooms with odd numbers.

You have to write a program to process the following queries:

- 1 k If $k \ge 1$, then k people arrive at the hotel. If k = 0, then infinitely many people arrive at the hotel. Assign the group number G to the new guests, and then increment G by 1.
- 2 g x Find the x-th smallest room number that contains a guest with the group number g. Output it modulo $10^9 + 7$, followed by a newline.
- 3 x Output the group number of the guest in room x, followed by a newline.

Input

In the first line, an integer Q ($1 \le Q \le 300,000$) denoting the number of queries is given. Each of the next lines contains a query. All numbers in the queries are integers.

- For the 1 k queries, $0 \le k \le 10^9$.
- For the 2 g x queries, g < G, $1 \le x \le 10^9$, and at least x guests have the group number g.
- For the 3 x queries, $0 \le x \le 10^9$.

Output

Process all queries and output as required. It is guaranteed that the output is not empty.

Example

standard input	standard output
10	0
3 0	1
1 3	0
2 1 2	9
1 0	4
3 10	4
2 2 5	
1 5	
1 0	
3 5	
2 3 3	

Note

If you know about "cardinals," please assume that "infinite" refers only to "countably infinite." If you don't know about it, then you don't have to worry.