Problem F. Hilbert's Hotel

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1.5 seconds

1024 mebibytes

Hilbert's hotel has infinitely many rooms, numbered $0,1,2, \ldots$ At most one guest occupies each room. Since people tend to check-in in groups, the hotel has a group counter variable G.
Hilbert's hotel had a grand opening today. Soon after, infinitely many people arrived at once, filling every room in the hotel. All guests got the group number 0 , and G is set to 1 .
Ironically, the hotel can accept more guests even though every room is filled:

- If $k(k \geq 1)$ people arrive at the hotel, then for each room number x, the guest in room x moves to room $x+k$. After that, the new guests fill all the rooms from 0 to $k-1$.
- If infinitely many people arrive at the hotel, then for each room number x, the guest in room x moves to room $2 x$. After that, the new guests fill all the rooms with odd numbers.

You have to write a program to process the following queries:

- 1 k - If $k \geq 1$, then k people arrive at the hotel. If $k=0$, then infinitely many people arrive at the hotel. Assign the group number G to the new guests, and then increment G by 1 .
- 2 g x - Find the x-th smallest room number that contains a guest with the group number g. Output it modulo $10^{9}+7$, followed by a newline.
- 3 x - Output the group number of the guest in room x, followed by a newline.

Input

In the first line, an integer $Q(1 \leq Q \leq 300,000)$ denoting the number of queries is given. Each of the next lines contains a query. All numbers in the queries are integers.

- For the 1 k queries, $0 \leq k \leq 10^{9}$.
- For the 2 g x queries, $g<G, 1 \leq x \leq 10^{9}$, and at least x guests have the group number g.
- For the 3 x queries, $0 \leq x \leq 10^{9}$.

Output

Process all queries and output as required. It is guaranteed that the output is not empty.

Example

	standard input		standard output
10		0	
3	0	1	
1	3	0	
2	1	2	9
1	0	4	
3	10	4	
2	2	5	
1	5		
1	0		
3	5		
2	3	3	

Note

If you know about "cardinals," please assume that "infinite" refers only to "countably infinite." If you don't know about it, then you don't have to worry.

