Problem G. Lexicographically Minimum Walk

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

There is a directed graph G with N nodes and M edges. Each node is numbered 1 through N, and each edge is numbered 1 through M. For each $i \ (1 \le i \le M)$, edge i goes from vertex u_i to vertex v_i and has a **unique** color c_i .

A walk is defined as a sequence of edges e_1, e_2, \dots, e_l where for each $1 \leq k < l, v_{e_k}$ (the tail of edge e_k) is the same as $u_{e_{k+1}}$ (the head of edge e_{k+1}). We can say a walk e_1, e_2, \dots, e_l starts at vertex u_{e_1} and ends at vertex v_{e_l} . Note that the same edge can appear multiple times in a walk.

The color sequence of a walk e_1, e_2, \cdots, e_l is defined as $c_{e_1}, c_{e_2}, \cdots, c_{e_l}$.

Consider all color sequences of walks of length at most 10^{100} from vertex S to vertex T in G. Write a program that finds the lexicographically minimum sequence among them.

Input

The first line of the input contains four space-separated integers N, M, S, and T ($1 \le N \le 100\,000$, $0 \le M \le 300\,000$, $1 \le S \le N$, $1 \le T \le N$, $S \ne T$).

Then *M* lines follow: the j $(1 \le j \le M)$ -th of them contains three space-separated integers u_i , v_i and c_i $(1 \le u_i, v_i \le N, u_i \ne v_i, 1 \le c_i \le 10^9)$; it describes a directional edge from vertex u_i to vertex v_i with color c_i .

The graph doesn't have multiple edges and each edge has a unique color. Formally, for any $1 \le i < j \le M$, $c_i \ne c_j$ and $(u_i, v_i) \ne (u_j, v_j)$ holds.

Output

If there is no walk from vertex S to vertex T, print "IMPOSSIBLE". (without quotes)

Otherwise, let's say a_1, a_2, \dots, a_l is the lexicographically minimum sequence among all color sequences of length at most 10^{100} from vertex S to vertex T.

- If $l \leq 10^6$, print a_1, a_2, \dots, a_l in the first line. There should be a space between each printed integer.
- If $l > 10^6$, print "TOO LONG". (without quotes)

Examples

standard input	standard output
3 3 1 3	1 7
1 2 1	
237	
1 3 5	
3 4 1 3	TOO LONG
1 2 1	
2 1 2	
237	
1 3 5	
2 0 2 1	IMPOSSIBLE

Note

Sequence p_1, p_2, \dots, p_n is lexicographically smaller than another sequence q_1, q_2, \dots, q_m if and only if one

of the following holds:

- There exists a unique j $(0 \le j < \min(n, m))$ where $p_1 = q_1, p_2 = q_2, \dots, p_j = q_j$ and $p_{j+1} < q_{j+1}$.
- n < m and $p_1 = q_1, p_2 = q_2, \dots, p_n = q_n$. In other words, p is a strict prefix of q.