Problem G. Lexicographically Minimum Walk

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 mebibytes

There is a directed graph G with N nodes and M edges. Each node is numbered 1 through N, and each edge is numbered 1 through M. For each $i(1 \leq i \leq M)$, edge i goes from vertex u_{i} to vertex v_{i} and has a unique color c_{i}.
A walk is defined as a sequence of edges $e_{1}, e_{2}, \cdots, e_{l}$ where for each $1 \leq k<l$, $v_{e_{k}}$ (the tail of edge e_{k}) is the same as $u_{e_{k+1}}$ (the head of edge e_{k+1}). We can say a walk $e_{1}, e_{2}, \cdots, e_{l}$ starts at vertex $u_{e_{1}}$ and ends at vertex $v_{e_{l}}$. Note that the same edge can appear multiple times in a walk.
The color sequence of a walk $e_{1}, e_{2}, \cdots, e_{l}$ is defined as $c_{e_{1}}, c_{e_{2}}, \cdots, c_{e_{l}}$.
Consider all color sequences of walks of length at most 10^{100} from vertex S to vertex T in G. Write a program that finds the lexicographically minimum sequence among them.

Input

The first line of the input contains four space-separated integers N, M, S, and $T(1 \leq N \leq 100000$, $0 \leq M \leq 300000,1 \leq S \leq N, 1 \leq T \leq N, S \neq T)$.
Then M lines follow: the $j(1 \leq j \leq M)$-th of them contains three space-separated integers u_{i}, v_{i} and c_{i} $\left(1 \leq u_{i}, v_{i} \leq N, u_{i} \neq v_{i}, 1 \leq c_{i} \leq 10^{9}\right)$; it describes a directional edge from vertex u_{i} to vertex v_{i} with color c_{i}.
The graph doesn't have multiple edges and each edge has a unique color. Formally, for any $1 \leq i<j \leq M$, $c_{i} \neq c_{j}$ and $\left(u_{i}, v_{i}\right) \neq\left(u_{j}, v_{j}\right)$ holds.

Output

If there is no walk from vertex S to vertex T, print "IMPOSSIBLE". (without quotes)
Otherwise, let's say $a_{1}, a_{2}, \cdots, a_{l}$ is the lexicographically minimum sequence among all color sequences of length at most 10^{100} from vertex S to vertex T.

- If $l \leq 10^{6}$, print $a_{1}, a_{2}, \cdots, a_{l}$ in the first line. There should be a space between each printed integer.
- If $l>10^{6}$, print "TOO LONG". (without quotes)

Examples

		standard input		standard output
3	3	1	3	1
1	2	1	7	
2	3	7		
1	3	5		
3	4	1	3	TOO LONG
1	2	1		
2	1	2		
2	3	7		
1	3	5		
2	0	2	1	IMPOSSIBLE

Note

Sequence $p_{1}, p_{2}, \cdots, p_{n}$ is lexicographically smaller than another sequence $q_{1}, q_{2}, \cdots, q_{m}$ if and only if one
of the following holds:

- There exists a unique $j(0 \leq j<\min (n, m))$ where $p_{1}=q_{1}, p_{2}=q_{2}, \cdots, p_{j}=q_{j}$ and $p_{j+1}<q_{j+1}$.
- $n<m$ and $p_{1}=q_{1}, p_{2}=q_{2}, \cdots, p_{n}=q_{n}$. In other words, p is a strict prefix of q.

