Problem H. Maximizer

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Maximizer has two permutations $A=\left[a_{1}, a_{2}, \cdots, a_{N}\right]$ and $B=\left[b_{1}, b_{2}, \cdots, b_{N}\right]$. Both A, B have length N and consists of distinct integers from 1 to N.
Maximizer wants to maximize the sum of differences of each element, $\sum_{i=1}^{N}\left|a_{i}-b_{i}\right|$. But he can only swap two adjacent elements in A. Precisely, he can only swap a_{i} and a_{i+1} for some i from 1 to $N-1$. He can swap as many times as he wants.
What is the minimum number of swaps required for maximizing the difference sum?

Input

The first line contains an integer $N .(1 \leq N \leq 250000)$
The second line contains N integers $a_{1}, a_{2}, \cdots, a_{N}\left(1 \leq a_{i} \leq N\right)$.
The third line contains N integers $b_{1}, b_{2}, \cdots, b_{N}\left(1 \leq b_{i} \leq N\right)$.
Each of $\left[a_{1}, a_{2}, \cdots, a_{N}\right]$ and $\left[b_{1}, b_{2}, \cdots, b_{N}\right]$ is a permutation. In other words, it is consisted of distinct integers from 1 to N.

Output

Print an integer, the minimum number of swaps required for maximizing the difference sum.

Examples

	standard input			
3			2	standard output
1	2	3		
1	2	3		3
4				
3	4	1	2	
3	2	4	1	

