Problem K. Wind of Change

Input file: standard input
Output file: standard output
Time limit: 12 seconds
Memory limit: 1024 mebibytes
The original title of this problem is "Tree Product Metric Voronoi Diagram Query Without One Point".
You are given two weighted trees T_{1}, T_{2} of size N, where each vertex are labeled with numbers $1 \ldots N$. Let $\operatorname{dist}\left(T_{1}, i, j\right)$ be the total weight of the shortest path from node i to j in tree T_{1}, and define $\operatorname{dist}\left(T_{2}, i, j\right)$ similarly.

Consider a point set of size N. Similar to Manhattan metric (in fact, this is a generalization of it), we can define the distance between two points $1 \leq i, j \leq N$: It is the sum of two distances, $\operatorname{dist}\left(T_{1}, i, j\right)+\operatorname{dist}\left(T_{2}, i, j\right)$. For each $1 \leq i \leq N$, please determine the "closest point" from the point i. Formally, for each i, you should find $\min _{j \neq i} \operatorname{dist}\left(T_{1}, i, j\right)+\operatorname{dist}\left(T_{2}, i, j\right)$.

Input

In the first line, a single integer N denoting the number of vertices in both trees is given. ($2 \leq N \leq 250000$)
In the next $N-1$ lines, description of the first tree is given. Each of the $N-1$ lines contains three integers S_{i}, E_{i}, W_{i}, which indicates there is an edge connecting two vertices S_{i}, E_{i} with weight W_{i} $\left(1 \leq S_{i}, E_{i} \leq N, 1 \leq W_{i} \leq 10^{9}\right)$
In the next $N-1$ lines, description of the second tree is given in the same format.

Output

Print N lines containing a single integer. In the i-th line, you should print a single integer denoting the answer for the point i.

Examples

standard input	standard output
5	25
1210	25
2420	85
3430	65
4550	105
1215	
1325	
1435	
1525	
9	18084
576577	9369
458869	9582
599088	23430
21124	26694
62410	9369
288154	23430
484810	9582
344268	22988
39763	
628959	
747984	
38504	
869085	
524861	
198539	
177834	

