Problem K. Wind of Change

Input file:	standard input
Output file:	standard output
Time limit:	12 seconds
Memory limit:	1024 mebibytes

The original title of this problem is "Tree Product Metric Voronoi Diagram Query Without One Point".

You are given two weighted trees T_1 , T_2 of size N, where each vertex are labeled with numbers $1 \ldots N$. Let $dist(T_1, i, j)$ be the total weight of the shortest path from node i to j in tree T_1 , and define $dist(T_2, i, j)$ similarly.

Consider a point set of size N. Similar to Manhattan metric (in fact, this is a generalization of it), we can define the distance between two points $1 \leq i, j \leq N$: It is the sum of two distances, $dist(T_1, i, j) + dist(T_2, i, j)$. For each $1 \leq i \leq N$, please determine the "closest point" from the point *i*. Formally, for each *i*, you should find $min_{j\neq i}dist(T_1, i, j) + dist(T_2, i, j)$.

Input

In the first line, a single integer N denoting the number of vertices in both trees is given. $(2 \leq N \leq 250\,000)$

In the next N - 1 lines, description of the first tree is given. Each of the N - 1 lines contains three integers S_i, E_i, W_i , which indicates there is an edge connecting two vertices S_i, E_i with weight W_i $(1 \le S_i, E_i \le N, 1 \le W_i \le 10^9)$

In the next N-1 lines, description of the second tree is given in the same format.

Output

Print N lines containing a single integer. In the *i*-th line, you should print a single integer denoting the answer for the point i.

Examples

standard input	standard output
5	25
1 2 10	25
2 4 20	85
3 4 30	65
4 5 50	105
1 2 15	
1 3 25	
1 4 35	
1 5 25	
9	18084
5 7 6577	9369
4 5 8869	9582
5 9 9088	23430
2 1 124	26694
6 2 410	9369
2 8 8154	23430
4 8 4810	9582
3 4 4268	22988
3 9 763	
6 2 8959	
7 4 7984	
3 8 504	
8 6 9085	
5 2 4861	
1 9 8539	
1 7 7834	