Problem E. Embedding Enumeration

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
4 seconds
512 mebibytes

As you probably know, a tree is a graph consisting of n nodes and $n-1$ undirected edges in which any two nodes are connected by exactly one path. In a labeled tree each node is labeled with a different integer between 1 and n. In general, it may be hard to visualize trees nicely, but some trees can be neatly embedded in rectangular grids.
Given a labeled tree G with n nodes, a 2 by n embedding of G is a mapping of nodes of G to the cells of a rectangular grid consisting of 2 rows and n columns such that:

- Node 1 is mapped to the cell in the upper-left corner.
- Nodes connected with an edge are mapped to neighboring grid cells (up, down, left or right).
- No two nodes are mapped to the same cell.

Find the number of 2 by n embeddings of a given tree, modulo $10^{9}+7$.

Input

The first line contains an integer $n(1 \leq n \leq 300000)$ - the number of nodes in G. The j-th of the following $n-1$ lines contains two different integers a_{j} and $b_{j}\left(1 \leq a_{j}, b_{j} \leq n\right)$ - the endpoints of the j-th edge.

Output

Output the number of 2 by n embeddings of the given tree, modulo $10^{9}+7$.

Example

	standard input	standard output
5		4
1	2	
2	3	
2	4	5

Note

All 4 embeddings of the tree in the example input are given in the figure above.

