Problem E. Embedding Enumeration

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

As you probably know, a *tree* is a graph consisting of n nodes and n-1 undirected edges in which any two nodes are connected by exactly one path. In a *labeled tree* each node is labeled with a different integer between 1 and n. In general, it may be hard to visualize trees nicely, but some trees can be neatly embedded in rectangular grids.

Given a labeled tree G with n nodes, a 2 by n embedding of G is a mapping of nodes of G to the cells of a rectangular grid consisting of 2 rows and n columns such that:

- Node 1 is mapped to the cell in the upper-left corner.
- Nodes connected with an edge are mapped to neighboring grid cells (up, down, left or right).
- No two nodes are mapped to the same cell.

Find the number of 2 by n embeddings of a given tree, modulo $10^9 + 7$.

Input

The first line contains an integer n $(1 \le n \le 300\,000)$ — the number of nodes in G. The *j*-th of the following n-1 lines contains two different integers a_j and b_j $(1 \le a_j, b_j \le n)$ — the endpoints of the *j*-th edge.

Output

Output the number of 2 by n embeddings of the given tree, modulo $10^9 + 7$.

Example

standard input	standard output
5	4
1 2	
2 3	
2 4	
4 5	

Note

All 4 embeddings of the tree in the example input are given in the figure above.