Problem F. Faulty Factorial

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

The factorial of a natural number is the product of all positive integers less than or equal to it. For example, the factorial of 4 is $1 \cdot 2 \cdot 3 \cdot 4=24$. A faulty factorial of length n is similar to the factorial of n, but it contains a fault: one of the integers is strictly smaller than what it should be (but still at least 1). For example, $1 \cdot 2 \cdot 2 \cdot 4=16$ is a faulty factorial of length 4.

Given the length n, a prime modulus p and a target remainder r, find some faulty factorial of length n that gives the remainder r when divided by p.

Input

The first line contains three integers n, p and $r\left(2 \leq n \leq 10^{18}, 2 \leq p<10^{7}, 0 \leq r<p\right)$ - the length of the faulty factorial, the prime modulus and the target remainder as described in the problem statement.

Output

If there is no faulty factorial satisfying the requirements output " $-1-1$ ". Otherwise, output two integers - the index k of the fault $(2 \leq k \leq n)$ and the value v at that index $(1 \leq v<k)$. If there are multiple solutions, output any of them.

Examples

standard input		standard output		
4	5	1	3	2

