Problem I. Intrinsic Interval

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

Given a permutation π of integers 1 through n, an *interval* in π is a consecutive subsequence consisting of consecutive numbers. More precisely, for indices a and b where $1 \leq a \leq b \leq n$, the subsequence $\pi_a^b = (\pi_a, \pi_{a+1}, \ldots, \pi_b)$ is an interval if sorting it would yield a sequence of consecutive integers. For example, in permutation $\pi = (3, 1, 7, 5, 6, 4, 2)$, the subsequence π_3^6 is an interval (it contains the numbers 4 through 7) while π_1^3 is not.

For a subsequence π_x^y its *intrinsic interval* is any interval π_a^b that contains the given subsequence $(a \le x \le y \le b)$ and that is, additionally, as short as possible. Of course, the *length* of an interval is defined as the number of elements it contains.

Given a permutation π and m of its subsequences, find some intrinsic interval for each subsequence.

Input

The first line contains an integer n $(1 \le n \le 100000)$ — the size of the permutation π . The following line contains n different integers $\pi_1, \pi_2, \ldots, \pi_n$ $(1 \le \pi_j \le n)$ — the permutation itself.

The following line contains an integer m $(1 \le m \le 100\,000)$ — the number of subsequences. The *j*-th of the following m lines contains integers x_j and y_j $(1 \le x_j \le y_j \le n)$ — the endpoints of the *j*-th subsequence.

Output

Output *m* lines. The *j*-th line should contain two integers a_j and b_j where $1 \le a_j \le b_j \le n$ — the endpoints of some intrinsic interval of the *j*-th subsequence $\pi_{x_j}^{y_j}$.

standard input	standard output
7	3 6
3 1 7 5 6 4 2	77
3	1 7
3 6	
77	
1 3	
10	1 4
2 1 4 3 5 6 7 10 8 9	3 7
5	3 7
2 3	3 10
3 7	7 10
4 7	
4 8	
78	

Example