Problem I. Intrinsic Interval

Input file: standard input
 Output file: standard output
 Time limit: $\quad 3$ seconds
 Memory limit: $\quad 512$ mebibytes

Given a permutation π of integers 1 through n, an interval in π is a consecutive subsequence consisting of consecutive numbers. More precisely, for indices a and b where $1 \leq a \leq b \leq n$, the subsequence $\pi_{a}^{b}=\left(\pi_{a}, \pi_{a+1}, \ldots, \pi_{b}\right)$ is an interval if sorting it would yield a sequence of consecutive integers. For example, in permutation $\pi=(3,1,7,5,6,4,2)$, the subsequence π_{3}^{6} is an interval (it contains the numbers 4 through 7) while π_{1}^{3} is not.

For a subsequence π_{x}^{y} its intrinsic interval is any interval π_{a}^{b} that contains the given subsequence ($a \leq x \leq y \leq b$) and that is, additionally, as short as possible. Of course, the length of an interval is defined as the number of elements it contains.

Given a permutation π and m of its subsequences, find some intrinsic interval for each subsequence.

Input

The first line contains an integer $n(1 \leq n \leq 100000)$ - the size of the permutation π. The following line contains n different integers $\pi_{1}, \pi_{2}, \ldots, \pi_{n}\left(1 \leq \pi_{j} \leq n\right)$ - the permutation itself.
The following line contains an integer $m(1 \leq m \leq 100000)$ - the number of subsequences. The j-th of the following m lines contains integers x_{j} and $y_{j}\left(1 \leq x_{j} \leq y_{j} \leq n\right)$ - the endpoints of the j-th subsequence.

Output

Output m lines. The j-th line should contain two integers a_{j} and b_{j} where $1 \leq a_{j} \leq b_{j} \leq n$ - the endpoints of some intrinsic interval of the j-th subsequence $\pi_{x_{j}}^{y_{j}}$.

Example

standard input	standard output
7 3 1 7 5 6 4 2 3 3 6 7 7 1 3	$\begin{array}{ll} \hline 3 & 6 \\ 7 & 7 \\ 1 & 7 \end{array}$
$\begin{array}{lllllllllll} \hline 10 & & & & & & & & \\ 2 & 1 & 4 & 3 & 5 & 6 & 7 & 10 & 8 & 9 \\ 5 & & & & & & & & \\ 2 & 3 & & & & & & & & \\ 3 & 7 & & & & & & & & \\ 4 & 7 & & & & & & & & \\ 4 & 8 & & & & & & & & \\ 7 & 8 & & & & & & & & \end{array}$	$\begin{array}{ll} 1 & 4 \\ 3 & 7 \\ 3 & 7 \\ 3 & 10 \\ 7 & 10 \end{array}$

