Problem J. Justified Jungle

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 mebibytes

As you probably know, a *tree* is a graph consisting of n nodes and n-1 undirected edges in which any two nodes are connected by exactly one path. A *forest* is a graph consisting of one or more trees. In other words, a graph is a forest if every connected component is a tree. A forest is *justified* if all connected components have the same number of nodes.

Given a tree G consisting of n nodes, find all positive integers k such that a justified forest can be obtained by erasing exactly k edges from G. Note that erasing an edge never erases any nodes. In particular when we erase all n-1 edges from G, we obtain a justified forest consisting of n one-node components.

Input

The first line contains an integer n $(2 \le n \le 1\,000\,000)$ — the number of nodes in G. The k-th of the following n-1 lines contains two different integers a_k and b_k $(1 \le a_k, b_k \le n)$ — the endpoints of the k-th edge.

Output

The first line should contain all wanted integers k, in increasing order.

Example

standard input	standard output
8	1 3 7
1 2	
2 3	
1 4	
4 5	
6 7	
8 3	
7 3	

Note

Figures depict justified forests obtained by erasing 1, 3 and 7 edges from the tree in the example input.