Problem L. Landscape

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
9.2 seconds

512 mebibytes

You travel through a scenic landscape consisting mostly of mountains - there are n landmarks (peaks and valleys) on your path. You pause for breath and wonder: which mountain are you currently seeing on the horizon?

Formally: you are given a polygonal chain $P_{1} P_{2} \ldots P_{n}$ in the plane. The x coordinates of the points are in strictly increasing order. For each segment $P_{i} P_{i+1}$ of this chain, find the smallest index $j>i$, for which at least one point of $P_{j} P_{j+1}$ is visible from $P_{i} P_{i+1}$ (lies ${ }^{* *}$ strictly above** the ray $P_{i} P_{i+1}$).

Input

The first line of input contains the number of test cases T. The descriptions of the test cases follow:
The first line of each test case contains an integer $n(2 \leq n \leq 100000)$ - the number of vertices on the chain.
Each of the following n lines contains integer coordinates x_{i}, y_{i} of the vertex P_{i} $\left(0 \leq x_{1}<x_{2}<\ldots<x_{n} \leq 10^{9} ; 0 \leq y_{i} \leq 10^{9}\right)$.

Output

For each test case, output a single line containing $n-1$ space-separated integers. These should be the smallest indices of chain segments visible to the right, or 0 when no such segment exists.

Example

standard input	standard output
2	0365600
8	644060
00	
37	
62	
94	
112	
133	
1713	
207	
7	
02	
12	
31	
40	
52	
61	
73	

