## Problem E. Edge Subsets

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
6 seconds
1024 mebibytes

You are given integers $A, B$, and a simple undirected graph of $N$ vertices and $M$ edges. The vertices are numbered from 1 through $N$, and the edges from 1 through $M$. The edge $i$ connects the vertices $U_{i}$ and $V_{i}$. Here, it is guaranteed that $V_{i}-U_{i}=A$ or $V_{i}-U_{i}=B$.
Find the number of matchings of the graph, modulo 998244353 . Note that a matching of the graph is a subset of edges whose end-points are all distinct.

## Input

The first line contains integers $N(3 \leq N \leq 200), M(1 \leq M \leq 400)$, $A$, and $B(1 \leq A<B \leq N-1)$.
The following $M$ lines describe the edges. The $i$-th of those lines contains integers $U_{i}$ and $V_{i}$ $\left(1 \leq U_{i}<V_{i} \leq N, V_{i}-U_{i}=A\right.$ or $\left.V_{i}-U_{i}=B\right)$. There are no self-loops or multi-edges.

## Output

Print the answer.

## Examples

|  | standard input |  | standard output |
| :--- | :--- | :--- | :--- |
| 4 | 3 | 1 | 2 |
| 1 | 2 |  | 5 |
| 1 | 3 |  |  |
| 3 | 4 |  |  |
| 10 | 14 | 2 | 4 |
| 5 | 7 |  |  |
| 7 | 9 |  |  |
| 2 | 6 |  |  |
| 6 | 8 |  |  |
| 1 | 5 |  |  |
| 3 | 7 |  |  |
| 4 | 8 |  |  |
| 1 | 3 |  |  |
| 4 | 6 |  |  |
| 8 | 10 |  |  |
| 3 | 5 |  |  |
| 5 | 9 |  |  |
| 2 | 4 |  |  |
| 6 | 10 |  |  |

