Problem J. Japanese Knowledge

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	1024 mebibytes

This problem might be well-known in some countries, but how do other countries learn about such problems if nobody poses them?

You are given a **non-decreasing positive** integer sequence $A = (A_1, A_2, \ldots, A_N)$ of length N. For each $k = 0, 1, 2, \ldots, N$, count the number of **non-decreasing non-negative** integer sequences $x = (x_1, x_2, \ldots, x_N)$ of length N that satisfy following conditions, modulo 998244353:

- $x_i \leq A_i$ for all $1 \leq i \leq N$.
- The number of indices i with $x_i = A_i$ is exactly k.

Input

The first line contains an integer N $(1 \le N \le 250000)$.

The second line contains N integers A_1, A_2, \ldots, A_N $(1 \le A_1 \le A_2 \le \cdots \le A_N \le 250000)$.

Output

For each k = 0, 1, 2, ..., N, print the answer.

Examples

standard input	standard output
3	5531
1 2 3	
4	15 10 6 3 1
3 3 3 3	
5	3982 1285 352 77 12 1
10 10 11 11 12	