Problem J

Jumbled Communication
Time limit: 5 seconds

Your best friend Adam has recently bought a Raspberry
Pi and some equipment, including a wireless tempera-
ture sensor and a 433MHz receiver to receive the signals
the sensors sends. Adam plans to use the Raspberry Pi
as an in-door display for his weather sensor. As he is
very good with electronics, he quickly managed to get
the receiver to receive the signals of the sensor. How-
ever, when he looked at the bytes sent by the sensor he
could not make heads or tails of them. After some hours
looking through a lot of websites, he found a document
explaining that his weather sensor scrambles the data
it sends, to prevent it from being used together with © NWERC Jury
products from other manufacturers.

Luckily, the document also describes how the sensor scrambles its communication. The docu-
ment states that the sensor applies the expression x ~ (x << 1) to every byte sent. The *
operator is bit-wise XOR!, e.g., 10110000 ~ 01100100 = 11010100. The << operator
is a (non-circular) left shift of a byte value?, e.g., 10111001 << 1 =01110010.

In order for Adam’s Raspberry Pi to correctly interpret the bytes sent by the weather sensor, the
transmission needs to be unscrambled. However, Adam is not good at programming (actually he
is a pretty bad programmer). So he asked you to help him and as a good friend, you are always
happy to oblige. Can you help Adam by implementing the unscrambling algorithm?

Input

The input consists of:

e one line with an integer n (1 < n < 10°), the number of bytes in the message sent by the
weather sensor;

e one line with n integers by, ..., b, (0 < b; < 255 for all 7), the byte values of the message.

Output
Output n byte values (in decimal encoding), the unscrambled message.

Sample Input 1 Sample Output 1

5 22 55 187 12 66
58 89 205 20 198

'In bit-wise XOR, the ith bit of the result is 1 if and only if exactly one of the two arguments has the ith bit set.
’Inx << j, the bits of x are moved j steps to the left. The j most significant bits of z are discarded, and j
zeroes are added as the least significant bits of the result.

NWERC 2015 Problem J: Jumbled Communication 19



