Problem I
 The Spectrum

Time limit: 5 seconds
Memory limit: 1024 megabytes

Problem Description

Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an integer sequence whose elements are distinct. The spectrum of X, denoted by $\operatorname{spec}(X)$, is the multiset $\left\{\left|x_{i}-x_{j}\right|: 1 \leq i<j \leq n\right\}$. Notice that a multiset counts multiplicity but ignores order. For example, $\{1,1,2\}$ and $\{2,1,1\}$ are the same, but $\{1,1,2\}$ and $\{1,2\}$ are different in multisets. For simplicity, we assume that sequence X is in the ascending order and $x_{1}=0$. For example, suppose $X=(0,1,4,5)$. Then $\operatorname{spec}(X)=\{1,1,3,4,4,5\}$. Given X, it is easy to compute $\operatorname{spec}(X)$. However, given $\operatorname{spec}(X)$, it is not an easy task to recover X from $\operatorname{spec}(X)$. In fact, it is possible that $\operatorname{spec}(X)=\operatorname{spec}(Y)$ for two different sequences X and Y. For example, $\operatorname{spec}(0,7,20)=\{7,13,20\}=\operatorname{spec}(0,13,20)$. Your job is to recover all possible X 's such that $\operatorname{spec}(X)$ is equal to the specified spectrum in the input.

Input Format

The first line in a test case gives you the number n, which is the size of the integer sequence X. The second line gives you the spectrum of X, which is a multiset and the numbers $d_{1}, \ldots, d_{\frac{n(n-1)}{2}}$ are listed in nondescending order with a single space as the delimiter between two consecutive numbers.

Output Format

First, output the total number of possible X 's (i.e. the number of solutions) in a line. Then dump all possible X 's in the lexicographic order (i.e. the dictionary order), one X per line. Let $Y=\left(y_{1}, \ldots, y_{n}\right)$ and $Z=\left(z_{1}, \ldots, z_{n}\right)$ be two such solutions. Then Y should precede Z if and only if there exists some index k where $1 \leq k \leq n$ such that $y_{k}<z_{k}$ and $y_{j}=z_{j}$ for all $1 \leq j<k$. For example, the sequence $Y=(0,7,20)$ should precede $Z=(0,13,20)$ in the lexicographic order because $y_{2}<z_{2}$ (i.e. $7<13$) and $y_{1}=z_{1}$. For each X, print its elements in ascending order with a single space between two consecutive numbers.

Technical Specification

- $2 \leq n \leq 62$.
- $0<d_{1} \leq d_{2} \leq \cdots \leq d_{\frac{n(n-1)}{2}}$.
- Your output should satisfy: $0 \leq x_{i} \leq 999$ for $1 \leq i \leq n$ and $x_{1}=0$.
- $x_{i}<x_{j}$ for $1 \leq i<j \leq n$.

Sample Input 1
 Sample Output 1

4					
2	2	2	4	4	6

Sample Input 2

5									
3	3	6	9	9	12	12	15	18	21

Sample Output 2
2
$\begin{array}{lllll}0 & 3 & 12 & 15 & 21\end{array}$
0691821
Sample Input 3
Sample Output 3
$\begin{array}{llllll}4 & & & & \\ 5 & 6 & 7 & 8 & 9 & 10\end{array}$

