



2019 ICPC Asia Taipei-Hsinchu Regional

# Problem M DivModulo

Time limit: 3 seconds Memory limit: 1024 megabytes

## **Problem Description**

Modulo (mod) is a very common operator on integers. For two integers n and d with d > 0,  $r \equiv (n \mod d)$  is defined where  $0 \le r < d$  and there exists an integer q, such that  $n = q \times d + r$ . For example, (200 mod 5)  $\equiv 0$  means that the remainder of 200 divided by 5 is 0. Here is another new operator called DivModulo (dmod) defined as follows. For two integers n and d with d > 0,  $r \equiv (n \mod d)$  is defined where there exists two integers m and h, such that  $r \equiv (m \mod d)$ ,  $n = m \times d^h$ , and d is not a factor of m. For example, (200 dmod 5)  $\equiv 3$ , since (200 dmod 5)  $\equiv (8 \times 5^2 \mod 5) \equiv (8 \mod 5) \equiv 3$ .

Consider the factorials and the combination function. For an integer  $M \ge 0$ , the factorial M! is defined as  $M! = M \times (M-1) \times (M-2) \times \cdots \times 3 \times 2 \times 1$ , and 0! = 1 is defined. For integers M and N with  $0 \le N \le M$ , the combination function C(M, N) is defined as  $C(M, N) = \frac{M!}{N! \times (M-N)!}$ . Now given three integers M, N, D with D > 0, please compute C(M, N) dmod D. For example,  $(C(9, 2) \mod 3) \equiv (36 \mod 3) \equiv (4 \times 3^2 \mod 3) \equiv (4 \mod 3) \equiv 1$ .

### Input Format

Three integers M, N and D are given in one line.

## **Output Format**

Please output C(M, N) dmod D in one line.

#### **Technical Specification**

- $1 \le M \le 4 \times 10^{18}$
- $0 \le N \le M$
- $2 \le D \le 1.6 \times 10^7$

| Sample Input 1 | Sample Output 1 |
|----------------|-----------------|
| 923            | 1               |
| Sample Input 2 | Sample Output 2 |
| 5 2 5          | 2               |
| Sample Input 3 | Sample Output 3 |
| 6 3 6          | 2               |
| Sample Input 4 | Sample Output 4 |
|                |                 |