Problem M

DivModulo
Time limit: 3 seconds
Memory limit: 1024 megabytes

Problem Description

Modulo (mod) is a very common operator on integers. For two integers n and d with $d>0$, $r \equiv(n \bmod d)$ is defined where $0 \leq r<d$ and there exists an integer q, such that $n=q \times d+r$. For example, $(200 \bmod 5) \equiv 0$ means that the remainder of 200 divided by 5 is 0 . Here is another new operator called DivModulo (dmod) defined as follows. For two integers n and d with $d>0, r \equiv(n \operatorname{dmod} d)$ is defined where there exists two integers m and h, such that $r \equiv(m \bmod d), n=m \times d^{h}$, and d is not a factor of m. For example, $(200 \operatorname{dmod} 5) \equiv 3$, since $(200 \mathrm{dmod} 5) \equiv\left(8 \times 5^{2} \mathrm{dmod} 5\right) \equiv(8 \bmod 5) \equiv 3$.

Consider the factorials and the combination function. For an integer $M \geq 0$, the factorial M ! is defined as $M!=M \times(M-1) \times(M-2) \times \cdots \times 3 \times 2 \times 1$, and $0!=1$ is defined. For integers M and N with $0 \leq N \leq M$, the combination function $C(M, N)$ is defined as $C(M, N)=\frac{M!}{N!\times(M-N)!}$. Now given three integers M, N, D with $D>0$, please compute $C(M, N) \operatorname{dmod} D$. For example, $(C(9,2) \operatorname{dmod} 3) \equiv(36 \operatorname{dmod} 3) \equiv\left(4 \times 3^{2} \operatorname{dmod} 3\right) \equiv(4 \bmod 3) \equiv 1$.

Input Format

Three integers M, N and D are given in one line.

Output Format

Please output $C(M, N)$ dmod D in one line.

Technical Specification

- $1 \leq M \leq 4 \times 10^{18}$
- $0 \leq N \leq M$
- $2 \leq D \leq 1.6 \times 10^{7}$

Sample Input 1

Sample Output 1
923
Sample Input 2 Sample Output 2
525
2

Sample Input 3

Sample Output 3

Sample Input 4

Sample Output 4

```
7654321 1234567 1050
```210```

