Problem F Hopscotch

Time Limit: ? Second(s)

There's a new art installation in town, and it inspires you... to play a childish game. The art installation consists of a floor with an $n \times n$ matrix of square tiles. Each tile holds a single number from 1 to k. You want to play hopscotch on it. You want to start on some tile numbered 1, then hop to some tile numbered 2 , then 3 , and so on, until you reach some tile numbered k. You are a good hopper, so you can hop any required distance. You visit exactly one tile of each number from 1 to k.

What's the shortest possible total distance over a complete game of Hopscotch? Use the Manhattan distance: the distance between the tile at $\left(x_{1}, y_{1}\right)$ and the tile at $\left(x_{2}, y_{2}\right)$ is $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

Input

The first line of input contains two space-separated integers $n(1 \leq n \leq 50)$ and $k\left(1 \leq k \leq n^{2}\right)$, where the art installation consists of an $n \times n$ matrix with tiles having numbers from 1 to k.

Each of the next n lines contains n space-separated integers $x(1 \leq x \leq k)$. This is the art installation.

Output

Output a single integer, which is the total length of the shortest path starting from some 1 tile and ending at some k tile, or -1 if it isn't possible.

Sample Input 1	Sample Output 1
105	5
$\begin{array}{llllllllll}5 & 1 & 3 & 4 & 2 & 4 & 2 & 1 & 2 & 1\end{array}$	
$\begin{array}{lllllllllll}4 & 5 & 3 & 4 & 1 & 5 & 3 & 1 & 1 & 4\end{array}$	
$\begin{array}{llllllllll}4 & 2 & 4 & 1 & 5 & 4 & 5 & 2 & 4 & 1\end{array}$	
$\begin{array}{llllllllll}5 & 2 & 1 & 5 & 5 & 3 & 5 & 2 & 3 & 2\end{array}$	
$\begin{array}{llllllllll}5 & 5 & 2 & 3 & 2 & 3 & 1 & 5 & 5 & 5\end{array}$	
$\begin{array}{llllllllll}3 & 4 & 2 & 4 & 2 & 2 & 4 & 4 & 2 & 3\end{array}$	
$\begin{array}{llllllllll}1 & 5 & 1 & 1 & 2 & 5 & 4 & 1 & 5 & 3\end{array}$	
$\begin{array}{llllllllll}2 & 2 & 4 & 1 & 2 & 5 & 1 & 4 & 3 & 5\end{array}$	
$\begin{array}{llllllllll}5 & 3 & 2 & 1 & 4 & 3 & 5 & 2 & 3 & 1\end{array}$	
$\begin{array}{llllllllll}3 & 4 & 2 & 5 & 2 & 5 & 3 & 4 & 4 & 2\end{array}$	

hosted in atlanta by
Georgia
College of Tech Computing

Sample Input 2
 Sample Output 2

10	5								
5	1	5	4	1	2	2	4	5	2
4	2	1	4	1	1	1	5	2	5
2	2	4	4	4	2	4	5	5	4
2	4	4	5	5	5	2	5	5	2
2	2	4	4	4	5	4	2	4	4
5	2	5	5	4	1	2	4	4	4
4	2	1	2	4	4	1	2	4	5
1	2	1	1	2	4	4	1	4	5
2	1	2	5	5	4	5	2	1	1
1	1	2	4	5	5	5	5	5	5

-1
$\begin{array}{llllllllll}5 & 1 & 5 & 4 & 1 & 2 & 2 & 4 & 5 & 2\end{array}$
$\begin{array}{llllllllll}4 & 2 & 1 & 4 & 1 & 1 & 1 & 5 & 2 & 5\end{array}$
$\begin{array}{llllllllll}2 & 2 & 4 & 4 & 4 & 2 & 4 & 5 & 5 & 4\end{array}$
$\begin{array}{llllllllll}2 & 4 & 4 & 5 & 5 & 5 & 2 & 5 & 5 & 2\end{array}$
$\begin{array}{llllllllll}2 & 2 & 4 & 4 & 4 & 5 & 4 & 2 & 4 & 4\end{array}$
$\begin{array}{llllllllll}5 & 2 & 5 & 5 & 4 & 1 & 2 & 4 & 4 & 4\end{array}$
$\begin{array}{llllllllll}4 & 2 & 1 & 2 & 4 & 4 & 1 & 2 & 4 & 5\end{array}$
$\begin{array}{llllllllll}1 & 2 & 1 & 1 & 2 & 4 & 4 & 1 & 4 & 5\end{array}$
$\begin{array}{llllllllll}1 & 1 & 2 & 4 & 5 & 5 & 5 & 5 & 5 & 5\end{array}$

