Problem F. Hopscotch

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

There's a new art installation in town, and it inspires you... to play a childish game. The art installation consists of a floor with an $n \times n$ matrix of square tiles. Each tile holds a single number from 1 to k. You want to play hopscotch on it. You want to start on some tile numbered 1, then hop to some tile numbered 2 , then 3 , and so on, until you reach some tile numbered k. You are a good hopper, so you can hop any required distance. You visit exactly one tile of each number from 1 to k.
What's the shortest possible total distance over a complete game of Hopscotch? Use the Manhattan distance: the distance between the tile at $\left(x_{1}, y_{1}\right)$ and the tile at $\left(x_{2}, y_{2}\right)$ is $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

Input

The first line of input contains two space-separated integers $n(1 \leq n \leq 50)$ and $k\left(1 \leq k \leq n^{2}\right)$, where the art installation consists of an $n \times n$ matrix with tiles having numbers from 1 to k.

Each of the next n lines contains n space-separated integers $x(1 \leq x \leq k)$. This is the art installation.

Output

Output a single integer, which is the total length of the shortest path starting from some 1 tile and ending at some k tile, or - 1 if it isn't possible.

Examples

standard input	standard output
105	5
515342421221	
455341553114	
4241545241	
5215535232	
5523231555	
3424224423	
1551125415	
2241251435	
53214435231	
3425253442	
105	-1
51554122452	
4214111525	
2244424554	
2445552552	
2244454244	
5255412444	
4212441245	
1211244145	
212555452211	
1124555555	

