Problem B. Born Slippy

Input file: standard input
Output file: standard output
Time limit: $\quad 7.5$ seconds
Memory limit: 256 mebibytes
Professor Zhang has a rooted tree with vertices conveniently labeled by $1,2, \ldots, n$. The i-th vertex has an integer weight w_{i}.
For each $s \in\{1,2, \ldots, n\}$, Professor Zhang wants to find a sequence of vertices $v_{1}, v_{2}, \ldots, v_{m}$ such that:

- $v_{1}=s$ and v_{i} is the ancestor of v_{i-1} for each $1<i \leq m$,
- the value $f(s)=w_{v_{1}}+\sum_{i=2}^{m}\left(w_{v_{i}}\right.$ op $\left.w_{v_{i-1}}\right)$ is maximum possible. Here, operation x op y is the bitwise AND, OR, or XOR operation on two integers.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer n and a string op $\left(2 \leq n \leq 2^{16}\right.$, op $\left.\in\{\operatorname{AND}, \mathrm{OR}, \mathrm{XOR}\}\right)$: the number of vertices and the operation. The second line contains n integers $w_{1}, w_{2}, \ldots, w_{n}\left(0 \leq w_{i}<2^{16}\right)$. The third line contains $n-1$ integers $p_{2}, p_{3}, \ldots, p_{n}\left(1 \leq p_{i}<i\right)$ where p_{i} is the parent of vertex i.
There are about 300 test cases, and the sum of n in all the test cases is no more than 10^{6}.

Output

For each test case, output the integer $S=\left(\sum_{i=1}^{n} i \cdot f(i)\right)$ modulo $10^{9}+7$.

Example

\quad standard input					
3				standard output	
5	AND			139	
5	4	3	2	1	
1	2	2	4		195
5	XOR				
5	4	3	2	1	
1	2	2	4		
5	OR				
5	4	3	2	1	
1	2	2	4		

