Problem C. Call It What You Want

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	64 mebibytes

Professor Zhang has heard that the longest path problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Now, Professor Zhang would like to solve this problem in polynomial time in some graphs.
The longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices. The length of a path is the number of edges in this path.

Input

There are multiple test cases. The first line of input contains an integer T (about 350) indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(3 \leq n \leq 10^{4}, n \leq m \leq n+4\right)$: the number of vertices and the number of edges.
Each of the following m lines contains two integers a_{i} and b_{i} which denotes an edge between vertices a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$.
It is guaranteed that the graph is connected and does not contain multiple edges.
The total size of the input is at most 4 mebibytes.

Output

For each test case, output an integer denoting the length of the longest path.

Example

	standard input	
3		4
5	5	6
1	2	standard output
2	3	
3	4	
4	5	
5	1	
7	7	
1	2	
2	3	
3	4	
4	5	
5	1	
5	6	
4	7	
7	10	
1	2	
2	3	
3	4	
4	5	
1	5	
2	5	
3	5	
1	6	
5	6	
4	7	

