Problem C. Call It What You Want

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	64 mebibytes

Professor Zhang has heard that the longest path problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Now, Professor Zhang would like to solve this problem in polynomial time in some graphs.

The longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices. The length of a path is the number of edges in this path.

Input

There are multiple test cases. The first line of input contains an integer T (about 350) indicating the number of test cases. For each test case:

The first line contains two integers n and m $(3 \le n \le 10^4, n \le m \le n+4)$: the number of vertices and the number of edges.

Each of the following m lines contains two integers a_i and b_i which denotes an edge between vertices a_i and b_i $(1 \le a_i, b_i \le n, a_i \ne b_i)$.

It is guaranteed that the graph is connected and does not contain multiple edges.

The total size of the input is at most 4 mebibytes.

Output

For each test case, output an integer denoting the length of the longest path.

Example

standard input	standard output
3	4
5 5	6
1 2	6
2 3	
3 4	
4 5	
5 1	
77	
1 2	
2 3	
3 4	
4 5	
5 1	
5 6	
4 7	
7 10	
1 2	
2 3	
3 4	
4 5	
1 5	
2 5	
3 5	
1 6	
5 6	
4 7	