Problem D. Differencia

Input file:	standard input
Output file:	standard output
Time limit:	30 seconds
Memory limit:	256 mebibytes

Professor Zhang has two sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$. He wants to perform two kinds of operations on the sequences:

- + $l r x$: set a_{i} to x for all $l \leq i \leq r$.
- ? $l r$: find the number of i such that $a_{i} \geq b_{i}$ and $l \leq i \leq r$.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains four integers n, m, A and $B\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 3000000,1 \leq A, B \leq 2^{16}\right)$: the length of the sequence, the number of operations and two parameters. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$. The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}\left(1 \leq b_{i} \leq 10^{9}\right)$.
As the number of operations can be rather large, the m operations are specified by parameters A and B given to the following generator routine.

```
int \(\mathrm{a}=\mathrm{A}, \mathrm{b}=\mathrm{B}, \mathrm{C}={ }^{\sim}(1 \ll 31), \mathrm{M}=(1 \ll 16)-1\);
int rnd (int last) \{
    \(\mathrm{a}=(36969+(\) last \(\gg 3)) *(\mathrm{a} \& \mathrm{M})+(\mathrm{a} \gg 16)\);
    \(\mathrm{b}=(18000+(\) last \(\gg 3)) *(\mathrm{~b} \& \mathrm{M})+(\mathrm{b} \gg 16)\);
    return (C \& (( \(\mathrm{a} \ll 16)+\mathrm{b})) \% 1000000000\);
\}
```

For the i-th operation, first call $\operatorname{rnd}($ last $)$ three times to get l, r and $x($ that is, $l=\operatorname{rnd}($ last $) \bmod n+1$, $r=\operatorname{rnd}($ last $) \bmod n+1, x=\operatorname{rnd}($ last $)+1)$. Then, if $l>r$, you should swap their values. And at last, the i-th operation has type '?' if $(l+r+x)$ is an even number, or type ' + ' otherwise.
Note: last is the answer of the latest type '?' operation. Assume last $=0$ at the beginning of each test case.
There are at most 300 test cases, and the total size of the input is at most 8 mebibytes.

Output

For each test case, output the integer $S=\left(\sum_{i=1}^{m} i \cdot z_{i}\right) \bmod \left(10^{9}+7\right)$, where z_{i} is the answer for i-th query. If the i-th query is of type ' + ', assume $z_{i}=0$.

Example

standard input					
3			81	standard output	
5	10	1	2		88
5	4	3	2	1	
1	2	3	4	5	
5	10	3	4		87
5	4	4	2	1	
1	2	3	4	5	
5	10	5	6		
5	4	5	2	1	
1	2	2	4	5	

