Problem D. Differencia

Input file:	standard input
Output file:	standard output
Time limit:	30 seconds
Memory limit:	256 mebibytes

Professor Zhang has two sequences a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n . He wants to perform two kinds of operations on the sequences:

- + l r x: set a_i to x for all $l \le i \le r$.
- ? l r: find the number of i such that $a_i \ge b_i$ and $l \le i \le r$.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains four integers n, m, A and B $(1 \le n \le 10^5, 1 \le m \le 3\,000\,000, 1 \le A, B \le 2^{16})$: the length of the sequence, the number of operations and two parameters. The second line contains nintegers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$. The third line contains n integers b_1, b_2, \ldots, b_n $(1 \le b_i \le 10^9)$.

As the number of operations can be rather large, the m operations are specified by parameters A and B given to the following generator routine.

int a = A, b = B, C = ~(1<<31), M = (1<<16)-1; int rnd(int last) { a = (36969 + (last >> 3)) * (a & M) + (a >> 16); b = (18000 + (last >> 3)) * (b & M) + (b >> 16); return (C & ((a << 16) + b)) % 1000000000; }

For the *i*-th operation, first call $\operatorname{rnd}(last)$ three times to get l, r and x (that is, $l = \operatorname{rnd}(last) \mod n + 1$, $r = \operatorname{rnd}(last) \mod n + 1$, $x = \operatorname{rnd}(last) + 1$). Then, if l > r, you should swap their values. And at last, the *i*-th operation has type '?' if (l + r + x) is an even number, or type '+' otherwise.

Note: last is the answer of the latest type '?' operation. Assume last = 0 at the beginning of each test case.

There are at most 300 test cases, and the total size of the input is at most 8 mebibytes.

Output

For each test case, output the integer $S = (\sum_{i=1}^{m} i \cdot z_i) \mod (10^9 + 7)$, where z_i is the answer for *i*-th query. If the *i*-th query is of type '+', assume $z_i = 0$.

Example

standard input	standard output
3	81
5 10 1 2	88
54321	87
1 2 3 4 5	
5 10 3 4	
54421	
1 2 3 4 5	
5 10 5 6	
54521	
1 2 2 4 5	