Problem F. Fantasia

Input file:
standard input
Output file: standard output
Time limit:
7.5 seconds
Memory limit:
64 mebibytes

Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex has an integer weight w_{i}. Let G_{i} be the graph obtained by deleting the i-th vertex from graph G. Professor Zhang wants to find the weights of $G_{1}, G_{2}, \ldots, G_{n}$.
The weight of a graph G is defined as follows:

- If G is connected, then the weight of G is the product of the weight of each vertex in G.
- Otherwise, the weight of G is the sum of the weights of all the connected components of G.

A connected component H of an undirected graph G is a subgraph in which any two vertices are connected by a path, and no other vertex in G is connected to any vertex from H by a path.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(2 \leq n \leq 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$: the number of vertices and the number of edges.
The second line contains n integers $w_{1}, w_{2}, \ldots, w_{n}\left(1 \leq w_{i} \leq 10^{9}\right)$ denoting the weight of each vertex.
Each of the next m lines contains two integers x_{i} and $y_{i}\left(1 \leq x_{i}, y_{i} \leq n, x_{i} \neq y_{i}\right)$ denoting an undirected edge.
There are at most 1000 test cases, the sum of n in all the test cases is at most $1.5 \cdot 10^{6}$, and the sum of m in all the test cases is also at most $1.5 \cdot 10^{6}$.

Output

For each test case, output the integer $S=\left(\sum_{i=1}^{n} i \cdot z_{i}\right)$ modulo $10^{9}+7$, where z_{i} is the weight of G_{i}.

Example

	standard input	standard output
1		20
3	2	
1	2	3
1	2	
2	3	

