Problem F. Fantasia

Input file:	standard input
Output file:	standard output
Time limit:	7.5 seconds
Memory limit:	64 mebibytes

Professor Zhang has an undirected graph G with n vertices and m edges. Each vertex has an integer weight w_i . Let G_i be the graph obtained by deleting the *i*-th vertex from graph G. Professor Zhang wants to find the weights of G_1, G_2, \ldots, G_n .

The weight of a graph G is defined as follows:

- If G is connected, then the weight of G is the product of the weight of each vertex in G.
- Otherwise, the weight of G is the sum of the weights of all the connected components of G.

A connected component H of an undirected graph G is a subgraph in which any two vertices are connected by a path, and no other vertex in G is connected to any vertex from H by a path.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m $(2 \le n \le 10^5, 1 \le m \le 2 \cdot 10^5)$: the number of vertices and the number of edges.

The second line contains n integers w_1, w_2, \ldots, w_n $(1 \le w_i \le 10^9)$ denoting the weight of each vertex.

Each of the next m lines contains two integers x_i and y_i $(1 \le x_i, y_i \le n, x_i \ne y_i)$ denoting an undirected edge.

There are at most 1000 test cases, the sum of n in all the test cases is at most $1.5 \cdot 10^6$, and the sum of m in all the test cases is also at most $1.5 \cdot 10^6$.

Output

For each test case, output the integer $S = (\sum_{i=1}^{n} i \cdot z_i)$ modulo $10^9 + 7$, where z_i is the weight of G_i .

Example

standard input	standard output
1	20
3 2	
1 2 3	
1 2	
2 3	