Problem H. Helter Skelter

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	128 mebibytes

A non-empty string s is called a binary string if it consists only of characters ' 0 ' and ' 1 '. A substring $s[l \ldots r](1 \leq l \leq r \leq|s|)$ of string $s=s_{1} s_{2} \ldots s_{|s|}$ (where $|s|$ is the length of string s) is the string $s_{l} s_{l+1} \ldots s_{r}$.
Professor Zhang has got a long binary string s starting with ' 0 ', and he wants to know whether there is a substring of s such that the number of occurrences of ' 0 ' and ' 1 ' in this substring are exactly a and b, respectively, where a and b are two given integers.
Since the binary string is very long, we will compress it. The compression method is as follows:

- Split the string into runs of equal consecutive characters.
- Any two adjacent runs consist of different characters. Use the length of each run to represent the string.

For example, the runs of the binary string "00101100011110111101001111111" are $\{00,1,0,11,000,1111,0,1111,0,1,00,1111111\}$, so it will be compressed into $\{2,1,1,2,3,4,1,4,1,1,2,7\}$.

Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n \leq 1000,1 \leq m \leq 5 \cdot 10^{5}\right)$: the number of runs and the number of queries. The next line contains n integers: $x_{1}, x_{2}, \ldots, x_{n}\left(1 \leq x_{i} \leq 10^{6}\right)$ indicating the length of each run.
Each of the following m lines contains two integers a_{i} and $b_{i}\left(0 \leq a_{i}, b_{i} \leq|s|, 1 \leq a_{i}+b_{i} \leq|s|\right)$ which means that Professor Zhang wants to know whether there is a substring of s such that the number of occurrences of ' 0 ' and ' 1 ' in this substring are exactly a_{i} and b_{i}, respectively.
There are no more than 200 test cases, and the total size of the input is at most 20 mebibytes. Additionally, the sum of m in all test cases is at most $2 \cdot 10^{6}$.

Output

For each test case, print a binary string of length m. The i-th digit must be ' 1 ' if the answer for the i-th query is "yes", or ' 0 ' otherwise.

Example

standard input	standard output
3	111
23	0101
34	1111101111
30	
34	
12	
34	
123	
51	
42	
13	
32	
1210	
$\begin{array}{llllllllllll}2 & 1 & 1 & 2 & 3 & 4 & 1 & 4 & 1 & 2\end{array}$	
21	
22	
23	
24	
25	
41	
42	
43	
44	
45	

