Problem I. It's All In The Mind

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	64 mebibytes

Professor Zhang has a number sequence a_1, a_2, \ldots, a_n . However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some attributes of the sequence:

- For every $i \in \{1, 2, ..., n\}, 0 \le a_i \le 100$.
- The sequence is non-increasing: $a_1 \ge a_2 \ge \ldots \ge a_n$.
- The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of $\frac{a_1+a_2}{\sum_{i=1}^n a_i}$ among all the possible sequences.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m $(2 \le n \le 100, 0 \le m \le n)$: the length of the sequence and the number of known elements.

Each of the next *m* lines contains two integers x_i and y_i $(1 \le x_i \le n, 0 \le y_i \le 100, x_i < x_{i+1}, y_i \ge y_{i+1})$ indicating that $a_{x_i} = y_i$.

There are at most 2000 test cases, and the total size of the input is no more than 350 kibibytes.

Output

For each test case, output the answer as an irreducible fraction p/q where p and q are integers, and q > 0.

Example

standard input	standard output
2	1/1 200/201
2 0	200/201
3 1	
3 1	