Problem L. La Vie En Rose

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
64 mebibytes

Professor Zhang would like to solve the multiple pattern matching problem, but he only has only one pattern string $p=p_{1} p_{2} \ldots p_{m}$. So, he wants to generate as many pattern strings as possible from p using the following method:

1. select some indices $i_{1}, i_{2}, \ldots, i_{k}$ such that $1 \leq i_{1}<i_{2}<\ldots<i_{k}<|p|$ and $\left|i_{j}-i_{j+1}\right|>1$ for all $1 \leq j<k$.
2. swap $p_{i_{j}}$ and $p_{i_{j}+1}$ for all $1 \leq j \leq k$.

Now, for a given a string $s=s_{1} s_{2} \ldots s_{n}$, Professor Zhang wants to find all occurrences of all the generated patterns in s.

Input

The first line contains two integers n and $m\left(1 \leq n \leq 10^{5}, 1 \leq m \leq \min (50000, n)\right)$: the lengths of s and p, respectively.
The second line contains the string s, and the third line contains the string p. Both strings consist only of lowercase English letters.

Output

Output a binary string of length n. The i-th character must be ' 1 ' if and only if the substring $s_{i} s_{i+1} \ldots s_{i+m-1}$ is one of the generated patterns. Otherwise, the character must be ' 0 '.

Examples

standard input	standard output
41 abac a	1010
42 aaaa aa	1110
93 abcbacacb abc	100100100

