Problem G. Snake

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Snake is a polyline with n vertices (without self-intersections). Initially, the coordinates of the i-th vertex of Snake is (x_{i}, y_{i}). Snake can move continuously by translation and rotation, but it can't change its shape (the lengths of the segments in the polyline and the angles between segments can't be changed). The line $y=0$ is a wall, and there is a small hole at $(0,0)$. Determine whether Snake can pass though the hole. (Initially, all points on Snake satisfy $y>0$. After the movement, all points on Snake should satisfy $y<0$.)

Input

First line of the input contains one integer $n(2 \leq n \leq 1000)$. Then n lines follow, i 'th of them contains pair of integers x_{i} and $y_{i}\left(0 \leq x_{i} \leq 10^{9}, 1 \leq y_{i} \leq 10^{9},\left(x_{i}, y_{i}\right) \neq\left(x_{i+1}, y_{i+1}\right)\right)$. The polyline doesn't have self-intersections. No three points are on the same line.

Output

If Snake can pass though the hole, print "Possible". Otherwise print "Impossible".

Examples

	standard input	
4		Possible
0	1	standard output
1	1	
1	2	
2	2	
11		
63	106	
87	143	
102	132	
115	169	
74	145	
41	177	
56	130	
28	141	
19	124	
0	156	
22	183	

Note

For the first example, solution may look in the next way:

- Move 1 to the $-y$ direction.
- Rotate 90 degrees coounter-clockwise around the point $(0,0)$.
- Move 1 to the $-y$ direction.
- Rotate 90 degrees clockwise around the point $(0,0)$.
- Move 1 to the $-y$ direction.
- Rotate 90 degrees counter-clockwise around the point $(0,0)$.
- Move 2 to the $-y$ direction.

