Problem H. Distance Sum

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	256 mebibytes

There are n cities and $n-1$ roads, and they form a tree. The cities are numbered 1 through n. The city 1 is the root, and for each i the parent of the city i is the city p_{i}, and the distance between i and p_{i} is d_{i}. Snuke wants to solve the following problem for each $1 \leq k \leq n$:
Compute the minimal possible sum of the distances from a certain city to the cities $1, \ldots, k$:

$$
\begin{equation*}
\min _{1 \leq v \leq n}\left\{\sum_{i=1}^{k} \operatorname{dist}(i, v)\right\} \tag{2}
\end{equation*}
$$

Here $\operatorname{dist}(u, v)$ denotes the distance between cities u and v.

Input

First line of the input contains one integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$. Then $n-1$ lines follow, i-th of them contains two integers p_{i+1} and d_{i+1} - parent of a city $i+1$ and the distance between $i+1$ 'th city and its parent ($1 \leq p_{i} \leq n, 1 \leq d_{i} \leq 2 \cdot 10^{5}$, the graph represented by p_{i} is a tree).

Output

Print n lines. In the i-th line, print the answer when $k=i$.

Examples

standard input	standard output
10	0
41	3
11	3
31	4
31	5
51	7
61	10
61	13
81	16
41	19
15	0
13	3
125	9
52	13
121	14
75	21
51	22
61	29
121	31
111	37
124	41
11	41
55	47
104	56
12	59

