Problem G. Glad You Came

Input file: standard input
 Output file: standard output
 Time limit: $\quad 5$ seconds
 Memory limit: 256 megabytes

Steve has an integer array a of length n (1-based). He assigned all the elements as zero at the beginning. After that, he made m operations, each of which is to update an interval of a with some value. You need to figure out $\bigoplus_{i=1}^{n}\left(i \cdot a_{i}\right)$ after all his operations are finished, where \bigoplus means the bitwise exclusive-OR operator.
In order to avoid huge input data, these operations are encrypted through some particular approach.
There are three unsigned 32 -bit integers X, Y and Z which have initial values given by the input. A random number generator function is described as following, where \wedge means the bitwise exclusive-OR operator, \ll means the bitwise left shift operator and \gg means the bitwise right shift operator. Note that function would change the values of X, Y and Z after calling.

```
function RNG61()
    \(X \leftarrow X \wedge(X \ll 11) \triangleright 32\)-bit unsigned integer overflow might occur
    \(X \leftarrow X \wedge(X \gg 4)\)
    \(X \leftarrow X \wedge(X \ll 5) \triangleright\) 32-bit unsigned integer overflow might occur
    \(X \leftarrow X \wedge(X \gg 14)\)
    \(W \leftarrow X \wedge(Y \wedge Z) \quad \triangleright\) as a partial 32-bit unsigned integer
    \(X \leftarrow Y\)
    \(Y \leftarrow Z\)
    \(Z \leftarrow W\)
    return \(Z\)
end function
```

Let the i-th result value of calling the above function as $f_{i}(i=1,2, \cdots, 3 m)$. The i-th operation of Steve is to update a_{j} as v_{i} if $a_{j}<v_{i}\left(j=l_{i}, l_{i}+1, \cdots, r_{i}\right)$, where

$$
\left\{\begin{array}{l}
l_{i}=\min \left(\left(f_{3 i-2} \bmod n\right)+1,\left(f_{3 i-1} \bmod n\right)+1\right) \\
r_{i}=\max \left(\left(f_{3 i-2} \bmod n\right)+1,\left(f_{3 i-1} \bmod n\right)+1\right)(i=1,2, \cdots, m) . \\
v_{i}=f_{3 i} \bmod 2^{30}
\end{array}\right.
$$

Input

The first line contains one integer T, indicating the number of test cases.
Each of the following T lines describes a test case and contains five space-separated integers n, m, X, Y and Z.
$1 \leq T \leq 100,1 \leq n \leq 10^{5}, 1 \leq m \leq 5 \cdot 10^{6}, 0 \leq X, Y, Z<2^{30}$.
It is guaranteed that the sum of n in all the test cases does not exceed 10^{6} and the sum of m in all the test cases does not exceed $5 \cdot 10^{7}$.

Output

For each test case, output the answer in one line.

Example

standard input	standard output
4	1031463378
110100100010000	1446334207
10100100010000100000	351511856
1001000100001000001000000	47320301347
100010000100000100000010000000	

Note

In the first sample, $a=[1031463378]$ after all the operations.
In the second sample, $a=[1036205629,1064909195,1044643689,1062944339,1062944339,1062944339$, 1062944339, 1057472915, 1057472915, 1030626924] after all the operations.

