2020/2021 SOUTHERN CALIFORNIA REGIONAL INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5 Digital Speedometer

A digital speedometer shows a vehicle's speed as integer miles per hour. There are occasions when the sensed speed varies between two integer values, such as during cruise control. Using a single threshold to round between adjacent integers often makes the display toggle rapidly between the two integers, which is distracting to the driver.

Your team must implement a smoothing technique for the display using separate rising and falling thresholds (t_r and t_f , respectively). See Figure 1 for a graphical depiction of the Sample Input for use with the following rules.

Each sensed speed, s, falls between two adjacent integers i and j, $i \le s < j$, where j = i + 1. When displaying the sensed speed s as an integer:

- When s falls between i and $i + t_f$, s is displayed as i.
- When s falls between $i + t_r$ and j, s is displayed as j.
- When s falls between $i + t_f$ and $i + t_r$, s is displayed as i if the most recent preceding value for s outside of range $[i + t_f, i + t_r]$ is less than $i + t_r$, and s is displayed as j if the most recent preceding value for s outside of range $[i + t_f, i + t_r]$ is greater than $i + t_r$.
- Any sensed speed, 0 < s < 1, must display as 1 because any non-zero speed, no matter how small, must display as non-zero to indicate that the vehicle is in motion.

The first line of input contains t_f , the falling threshold. The second line of input contains t_r , the rising threshold. The speed sensor reports s in increments of 0.1 mph. The thresholds are always set halfway between speed increments. All remaining lines until end-of-file are successive decimal speeds, s, in miles per hour, one speed per line. The third line of input, which is the first measured speed, will always be 0.

$$0 < t_f, t_r < 1;$$
 $t_f < t_r;$ $0 \le s \le 120$

Output is the list of speeds, one speed per line, smoothed to integer values appropriate to t_f and t_r .

Sample Input

0.25	
0.75	
0	
2.0	
5.7	
5.8	
5.7	
5.2	
5 7	

0.8

Problem 5 Digital Speedometer (continued)

 $Output \ for \ the \ Sample \ Input$

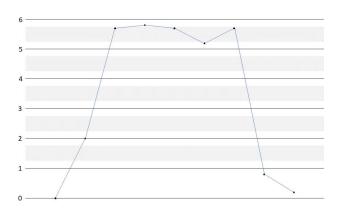


Figure 1. Sensor readings from the Sample Input, with $t_f=0.25$ and $t_r=0.75$.

Explanation of the Sample Data

Input	Output	Explanation
0.25		Value of t_f .
0.75		Value of t_r .
0	0	Initial input.
2.0	2	Input greater than 0, outside of threshold range.
5.7	5	Input greater than 2.0, in threshold range.
5.8	6	Input greater than 2.0, exceeds upper threshold of 5.75.
5.7	6	Input less than 5.8, in threshold range.
5.2	5	Input less than 5.8, below threshold range of 5.25.
5.7	5	Input greater than 5.2, in threshold range.
0.8	1	Input greater than 0 and less than 1.
0.2	1	Input greater than 0 and less than 1.