2020/2021 SOUTHERN CALIFORNIA REGIONAL INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9
Redundant Binary Notation

Redundant binary notation is similar to binary notation, except instead of allowing only 0s and 1s for each digit, we allow any integer digit in the range $[0, t]$, where t is some specified upper bound. For example, if $t=2$, the digit 2 is permitted, and we may write the decimal number 4 as 100,20 , or 12 . If $t=1$, every number has precisely one representation, which is its typical binary representation. In general, if a number is written as $d_{l} d_{l-1} \ldots d_{1} d_{0}$ in redundant binary notation, the equivalent decimal number is $d_{l} \cdot 2^{l}+d_{l-1} \cdot 2^{l-1}+\cdots+d_{1} \cdot 2^{1}+d_{0} \cdot 2^{0}$.

Redundant binary notation can allow carryless arithmetic, and thus has applications in hardware design and even in the design of worst-case data structures. For example, consider insertion into a standard binomial heap. This operation takes $O(\log n)$ worst-case time but $O(1)$ amortized time. This is because the binary number representing the total number of elements in the heap can be incremented in $O(\log n)$ worst-case time and $O(1)$ amortized time. By using a redundant binary representation of the individual binomial trees in a binomial heap, it is possible to improve the worst-case insertion time of binomial heaps to $O(1)$.

However, none of that information is relevant to this question. In this question, your task is simple. Given a decimal number N and the digit upper bound t, you are to count the number of possible representations N has in redundant binary notation with each digit in range $[0, t]$ with no leading zeros.

Input consists of a single line with two decimal integers $N\left(0 \leq N \leq 10^{16}\right)$ and $t(1 \leq t \leq 100)$, separated by whitespace.

Output in decimal the number of representations the decimal number N has in redundant binary notation with each digit in range $[0, t]$ with no leading zeros. Since the number of representations may be very large, output the answer modulo the large prime 998244353.

Sample Input 1

42

Output for Sample Input 1

3

Sample Input 2

63

Output for Sample Input 2

Problem 9
Redundant Binary Notation (continued)

Sample Input 3

4791

Output for Sample Input 3
1

Sample Input 4

384692738479962

Output for Sample Input 4
690163857

Sample Input 5

5497558138872

Output for Sample Input 5

1

