# 2020/2021 SOUTHERN CALIFORNIA REGIONAL INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST 

## Problem?

Safest Taxi

Consider a town whose road network forms an $N * M$ grid, where adjacent intersections are connected by roads. All roads are bi-directional. Each direction has an associated number - the time needed to travel from one end-point to another.

Each direction of each road consists of one or more lanes. A lane can serve one of the following functions: left-turn, straight, right-turn, or any combination of them. However, a left-turn lane cannot be placed to the right of a straight or right-turn lane, and a straight lane cannot be placed to the right of a right-turn lane. There are no U-turn lanes.


The rules for crossing intersections are illustrated in the above figure (suppose a car enters the intersection from the south). To make a left turn, it must be in one of the $L$ left-turn lanes; let's number them 1 through $L$ from left to right. The traffic rule says Lane $i$ must turn into the $i$-th lane (counting from the left) of the target road, except that Lane $L$ may turn into the $L$-th lane or any other lanes to its right.

Similarly, to go straight through an intersection, the car must be in one of the $S$ straight lanes; let's number them 1 through $S$ from left to right. Lane $i$ must go into the $i$-th lane (counting from the left) of the target road, except that Lane $S$ may go into the $S$-th lane or any other lanes to its right.

To make a right turn, the car must be in one of the $R$ right-turn lanes. For the convenience of discussion, we consider these lanes and those of the target road from right to left. Let's number the right-turn lanes 1 through $R$ from right to left. Lane $i$ must turn into the $i$-th lane (counting from the right) of the target road, except that Lane $R$ may turn into the $R$-th lane or any other lanes to its left.

It is guaranteed that if at least one left-turn / straight / right-turn lane is present, the target road must exist and have enough lanes to accommodate the left turn / straight / right turn, respectively. The time spent on crossing intersections is negligible.

In addition, a driver may change lanes in the middle of a road. Note that in the above rules for intersections, it doesn't count as a lane change to drive into any of the legal lanes of the target road. The time spent on lane changes is negligible.

A trip starts and ends at the rightmost lane of the midpoint of roads. The time needed to travel midpoint-to-endpoint is half of endpoint-to-endpoint.

You are running a taxi company called "Safest Taxi" in this town, with the slogan "your safety is in
your hands". You let your customers choose the numbers $X$ and $Y$ for their trip, and the driver will make at most $X$ left turns and $Y$ lane changes to accomplish the trip.

What is the shortest time to fulfill each trip given the rules?

> input

The first line consists of three integers $N(2<=N<=15), M(2<=M<=15)$ and $K(1<=K<=3)$, separated by a single space. The town's road network has $N$ intersections north-south and $M$ intersections west-east. Each road has $K$ lanes.

The second line consists of a single integer $D$. The town's road network has $D$ road segments. Every adjacent pair of intersections must appear in the list exactly once.

Each of the next $D$ lines describes a road segment with the following format:

$$
R_{0} C_{0} R_{1} C_{1} T L_{0} L_{1} \ldots L_{K-1}
$$

This describes a road segment going from the intersection at row $R_{0}$ column $C_{0}$ to the intersection at row $R_{1}$ column $C_{1}\left(0<=R_{0}, R_{1}<N, 0<=C_{0}, C_{1}<M\right)$. Rows are numbered 0 through $N-1$ from north to south, and columns are numbered 0 through $M-1$ from west to east. The segment must connect two adjacent intersections, i.e., $\left|R_{0}-R_{1}\right|+\left|C_{0}-C_{1}\right|=1$. The time to travel through the entire segment is $T$ ( $2<=T<=100, T$ must be an even number). The next $K$ strings describe the function of each of the $K$ lanes, from left to right, with the following semantics:

L | Left-turn only
S | Straight only
R | Right-turn only
LR | Left-turn or right-turn
LS | Left-turn or straight
SR | Straight or right-turn
LSR | Left-turn, straight or right-turn
The next line consists of a single integer $P(1<=P<=50)$, the number of trips to fulfill.
Each of the next $P$ lines describes a trip with the following format:

$$
R_{S 0} C_{S 0} R_{S 1} C_{S 1} R_{D 0} C_{D 0} R_{D 1} C_{D 1} X Y
$$

This indicates that the starting point is the midpoint of segment $\left(R_{S 0}, C_{S 0}\right) \rightarrow\left(R_{S 1}, C_{S 1}\right)$, and the destination is the midpoint of segment $\left(R_{D 0}, C_{D 0}\right) \rightarrow\left(R_{D 1}, C_{D 1}\right)$. Both segments must appear in the above list. Both the starting point and the destination are on the rightmost lane. The customer requests that at most $X(0<=X<=4)$ left turns and $Y(0<=Y<=4)$ lane changes are allowed for the trip.

## output

Output $P$ lines. The $i$-th line contains a single integer which is the shortest time to fulfill each trip given the rules, or -1 if no feasible route exists.
sample input

```
3 32
24
0 0 0 1 6 S R
0 1 0 0 8 L L
010 2 16 R R
0 2 0 1 18 LS S
0 0 1 0 8 LS S
10 0 0 8 R R
0}1111110 LS S
11 0 1 16 L R
0 2 1 2 8 S R
120 2 8 L L
1 0 1 1 6 L SR
11 1 0 8 L R
111 1 2 16 L R
1 2 1 1 18 L SR
10208 L L
20108 S R
1 1 2 1 10 L R
21118 LS SR
122 2 8 R R
2 2 1 2 8 LS S
2 0 2 1 10 LS S
2 1 2 0 12 R R
21226 L L
2 2 1 8 S SR
6
2
2 11111111110110
2 1111111111010
0102020120
10000001020
2120202120
sample output
8
4 8
66
131
112
95
```

explanation for the sample
The first three lines of the sample output are illustrated in the figure below.


- If $X=1$ and $Y=1$, the shortest path is shown in red: make a lane change before reaching E and make a left turn. The total time is $8 / 2+8 / 2=8$;
- If $X=1$ and $Y=0$, the shortest path is shown in green: go through E-F-I-H-E and make a left turn. The total time is $8 / 2+16+8+8+8+8 / 2=48$;
- If $X=0$ and $Y=0$, the shortest path is shown in blue: go through E-B-C-F-E. The total time is $8 / 2+16+16+8+18+8 / 2=66$.

