Problem F. Cycle sort

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

You are given an array of n positive integers $a_{1}, a_{2}, \ldots, a_{n}$. You can perform the following operation any number of times: select several distinct indices $i_{1}, i_{2}, \ldots, i_{k}\left(1 \leq i_{j} \leq n\right)$ and move the number standing at the position i_{1} to the position i_{2}, the number at the position i_{2} to the position i_{3}, \ldots, the number at the position i_{k} to the position i_{1}. In other words, the operation cyclically shifts elements: $i_{1} \rightarrow i_{2} \rightarrow \ldots i_{k} \rightarrow i_{1}$.
For example, if you have $n=4$, an array $a_{1}=10, a_{2}=20, a_{3}=30, a_{4}=40$, and you choose three indices $i_{1}=2, i_{2}=3, i_{3}=4$, then the resulting array would become $a_{1}=10, a_{2}=40, a_{3}=20, a_{4}=30$.
Your goal is to make the array sorted in non-decreasing order with minimum number of operations. The additional constraint is that the sum of cycle lengths over all operations should be less than or equal to a number s. If it's impossible to sort the array while satisfying that constraint, your solution should report that as well.

Input

The first line of the input contains two integers n and $s(1 \leq n \leq 200000,0 \leq s \leq 200000)$-the number of elements in the array and the upper bound on the sum of cycle lengths.
The next line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$-elements of the array ($1 \leq a_{i} \leq 10^{9}$).

Output

If it's impossible to sort the array using cycles of total length not exceeding s, print a single number " -1 " (quotes for clarity).
Otherwise, print a single number q - the minimum number of operations required to sort the array.
On the next $2 q$ lines print descriptions of operations in the order they are applied to the array. The description of i-th operation begins with a single line containing one integer $k(1 \leq k \leq n)$-the length of the cycle (that is, the number of selected indices). The next line should contain k distinct integers $i_{1}, i_{2}, \ldots, i_{k}\left(1 \leq i_{j} \leq n\right)$-the indices of the cycle.
The sum of lengths of these cycles should be less than or equal to s, and the array should be sorted after applying these q operations.
If there are several possible answers with the optimal q, print any of them.

Scoring

Subtask 1 (5 points)

$n, s \leq 2$ and all elements of the array are either 1 or 2 .

Subtask 2 (5 points)

$n \leq 5$.

Subtask 3 (5 points)

All elements of the array are either 1 or 2.

Subtask 4 (10 points)

Array contains numbers from 1 to n only, each number appears exactly once, $s=2 \cdot n$.

Subtask 5 (10 points)

Array contains numbers from 1 to n only, each number appears exactly once, $n \leq 1000$.

Subtask 6 (15 points)

Array contains numbers from 1 to n only, each number appears exactly once.

Subtask 7 (15 points)

$s=2 \cdot n$.

Subtask 8 (15 points)

$n \leq 1000$.

Subtask 9 (20 points)

No additional constraints.

Examples

standard input	standard output
$\begin{array}{lllll} 5 & 5 & & & \\ 3 & 2 & 3 & 1 & 1 \end{array}$	$\begin{array}{lllll} \hline 1 & & & \\ 5 & & & \\ 1 & 4 & 2 & 3 & 5 \end{array}$
$\begin{array}{llll} \hline 4 & 3 & & \\ 2 & 1 & 4 & 3 \end{array}$	-1
$\begin{array}{ll} \hline 2 & 0 \\ 2 & 2 \end{array}$	0
$\begin{array}{lllllll} \hline 6 & 9 & & & & \\ 6 & 5 & 4 & 3 & 2 & 1 \end{array}$	$\begin{array}{lllllll} \hline 2 & & & & & \\ 6 & & & & & \\ 1 & 6 & 2 & 5 & 3 & 4 \\ 3 & & & & \\ 3 & 2 & 1 & & & \end{array}$
$\begin{array}{lllllll} \hline 6 & 8 & & & & \\ 6 & 5 & 4 & 3 & 2 & 1 \end{array}$	$\begin{array}{llll} \hline 3 & & & \\ 2 & & & \\ 3 & 4 & & \\ 4 & & & \\ 1 & 6 & 2 & 5 \\ 2 & & & \\ 2 & 1 & & \end{array}$

Note

In the first example, it's also possible to sort the array with two operations of total length 5: first apply the cycle $1 \rightarrow 4 \rightarrow 1$ (of length 2), then apply the cycle $2 \rightarrow 3 \rightarrow t \rightarrow 2$ (of length 3). However, it would be wrong answer as you're asked to use the minimal possible number of operations, which is 1 in that case.

In the second example, it's possible to the sort the array with two cycles of total length $4(1 \rightarrow 2 \rightarrow 1$ and $3 \rightarrow 4 \rightarrow 3$). However, it's impossible to achieve the same using shorter cycles, which is required by $s=3$.

In the third example, the array is already sorted, so no operations are needed. Total length of empty set of cycles is considered to be zero.
Notice that examples 1 and 3 contain duplicate numbers, so they do not satisfy requirements for subtasks 4,5 and 6 . Examples 2,4 , and 5 satisfy requirements for subtasks 5 and 6 .

