Problem B

Parallel Lines

Time Limit: 10 seconds

Given an even number of distinct planar points, consider coupling all of the points into pairs. All the possible couplings are to be considered as long as all the given points are coupled to one and only one other point.

When lines are drawn connecting the two points of all the coupled point pairs, some of the drawn lines can be parallel to some others. Your task is to find the maximum number of parallel line pairs considering all the possible couplings of the points.

For the case given in the first sample input with four points, there are three patterns of point couplings as shown in Figure B.1. The numbers of parallel line pairs are 0,0 , and 1, from the left. So the maximum is 1 .

Figure B.1. All three possible couplings for Sample Input 1

For the case given in the second sample input with eight points, the points can be coupled as shown in Figure B.2. With such a point pairing, all four lines are parallel to one another. In other words, the six line pairs $\left(L_{1}, L_{2}\right),\left(L_{1}, L_{3}\right),\left(L_{1}, L_{4}\right),\left(L_{2}, L_{3}\right),\left(L_{2}, L_{4}\right)$ and $\left(L_{3}, L_{4}\right)$ are parallel. So the maximum number of parallel line pairs, in this case, is 6 .

Input

The input consists of a single test case of the following format.

```
m
x}1\mp@subsup{y}{1}{
\vdots
xm ym
```


Figure B.2. Maximizing the number of parallel line pairs for Sample Input 2

The first line contains an even integer m, which is the number of points $(2 \leq m \leq 16)$. Each of the following m lines gives the coordinates of a point. Integers x_{i} and $y_{i}\left(-1000 \leq x_{i} \leq 1000\right.$, $-1000 \leq y_{i} \leq 1000$) in the i-th line of them give the x - and y-coordinates, respectively, of the i-th point.

The positions of points are all different, that is, $x_{i} \neq x_{j}$ or $y_{i} \neq y_{j}$ holds for all $i \neq j$. Furthermore, No three points lie on a single line.

Output

Output the maximum possible number of parallel line pairs stated above, in one line.

Sample Input $1 \quad$ Sample Output 1

4		1
0	0	
1	1	
0	2	
2	4	

8	6	
0	0	
0	5	
2	2	
2	7	
3	-2	
5	0	
4	-2	
8	2	

Sample Input 3

Sample Output 3

6		3
0	0	
0	5	
3	-2	
3	5	
5	0	
5	7	

Sample Input 4
Sample Output 4

```
2
-1000 1000
1000-1000
```

Sample Input 5
Sample Output 5

```
16
327449
-509761
-553 515
360 948
147 }87
-694 468
241 320
463 -753
-206 -991
473 -738
-156 -916
-215 54
-112 -476
-452 780
-18 -335
-146 77
```

12

