Problem K Counting Cycles

Time Limit: 4 seconds

Given an undirected graph, count the number of simple cycles in the graph. Here, a simple cycle is a connected subgraph all of whose vertices have degree exactly two.

Input

The input consists of a single test case of the following format.

$$
\begin{aligned}
& n \\
& u_{1} \\
& u_{1} \\
& \vdots \\
& u_{m}
\end{aligned} v_{m}
$$

A test case represents an undirected graph G.
The first line shows the number of vertices $n(3 \leq n \leq 100000)$ and the number of edges m $(n-1 \leq m \leq n+15)$. The vertices of the graph are numbered from 1 to n.

The edges of the graph are specified in the following m lines. Two integers u_{i} and v_{i} in the i-th line of these m lines mean that there is an edge between vertices u_{i} and v_{i}. Here, you can assume that $u_{i}<v_{i}$ and thus there are no self loops.

For all pairs of i and $j(i \neq j)$, either $u_{i} \neq u_{j}$ or $v_{i} \neq v_{j}$ holds. In other words, there are no parallel edges.

You can assume that G is connected.

Output

The output should be a line containing a single number that is the number of simple cycles in the graph.

\left.| Sample Input 1 | Sample Output 1 |
| :--- | :--- |
| 4 | 5 |
| 1 | 2 |
| 1 | 3 |
| 1 | 4 |
| 2 | 3 |
| 3 | 4 |$\right) 3$

7	9	3
1	2	
1	3	
2	4	
2	5	
3	6	
3	7	
2	3	
4	5	
6	7	

Sample Input 3
Sample Output 3

4	6	
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	

