Problem B. Cactus Competition

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

In Byteland, there is a school with an enormously large playground. The playground is an $N \times M$ grid. Since the playground is so large, the weather may differ in different squares of the grid. For $1 \leq i \leq N, 1 \leq j \leq M$, cell (i, j) has a temperature of $A_{i}+B_{j}$. The sequences A and B are known in advance.
Sunghyeon wants to organize a relay race competition in the playground. The race will start in cell $(S, 1)$ and end in cell (T, M), where S and T are integers that are to be determined. In the race, students will only run to the right and down. In other words, a student in cell (i, j) can move directly to cells $(i, j+1)$ or $(i+1, j)$. From this, it is clear that $1 \leq S \leq T \leq N$ must hold for the race to be valid.
The people of Byteland love cacti. Therefore, all students will hold a cactus while in the race. Since cacti can't endure cold weather, all cells in the racetrack should satisfy $A_{i}+B_{j} \geq 0$.
There are $\frac{N(N+1)}{2}$ candidate races over all candidate pairs of S and T. Please find the number of valid pairs - a pair is valid if the corresponding race can be completed given the constraints due to the cacti.

Input

The first line contains two space-separated integers $N, M(1 \leq N, M \leq 200000)$.
The second line contains N space-separated integers $A_{1}, A_{2}, \cdots, A_{N}\left(-10^{9} \leq A_{i} \leq 10^{9}\right)$.
The third and final line contains M space-separated integers $B_{1}, B_{2}, \cdots, B_{M}\left(-10^{9} \leq B_{i} \leq 10^{9}\right)$.

Output

Print the number of valid pairs of S and T.

Examples

\left.| standard input | | | | | standard output |
| :--- | :--- | :--- | :---: | :---: | :---: |
| 3 | 3 | | | | |
| -1 | 0 | 1 | | | |
| -1 | 0 | 1 | | | |$\right)$

