ICPC — International Collegiate Programming Contest Asia Regional Contest, Yokohama, 2018–12–09

Problem E Eulerian Flight Tour

Time Limit: 3 seconds

You have an airline route map of a certain region. All the airports in the region and all the *non-stop routes* between them are on the map. Here, a non-stop route is a flight route that provides non-stop flights in both ways.

Named after the great mathematician Leonhard Euler, an *Eulerian tour* is an itinerary visiting all the airports in the region taking a single flight of every non-stop route available in the region. To be precise, it is a list of airports, satisfying all of the following.

- The list begins and ends with the same airport.
- There are non-stop routes between pairs of airports adjacent in the list.
- All the airports in the region appear *at least once* in the list. Note that it is allowed to have some airports appearing multiple times.
- For all the airport pairs with non-stop routes in between, there should be *one and only one adjacent appearance* of two airports of the pair in the list in either order.

It may not always be possible to find an Eulerian tour only with the non-stop routes listed in the map. Adding more routes, however, may enable Eulerian tours. Your task is to find a set of additional routes that enables Eulerian tours.

Input

The input consists of a single test case.

```
n m
a_1 b_1
\vdots
a_m b_m
```

 $n \ (3 \le n \le 100)$ is the number of airports. The airports are numbered from 1 to n. $m \ (0 \le m \le \frac{n(n-1)}{2})$ is the number of pairs of airports that have non-stop routes. Among the m lines following it, integers a_i and b_i on the *i*-th line of them $(1 \le i \le m)$ are airport numbers between which a non-stop route is operated. You can assume $1 \le a_i < b_i \le n$, and for any $i \ne j$, either $a_i \ne a_j$ or $b_i \ne b_j$ holds.

Output

Output a set of additional non-stop routes that enables Eulerian tours. If two or more different sets will do, any one of them is acceptable. The output should be in the following format.

 $k \\ c_1 \ d_1 \\ \vdots \\ c_k \ d_k$

k is the number of non-stop routes to add, possibly zero. Each of the following k lines should have a pair of integers, separated by a space. Integers c_i and d_i in the *i*-th line $(c_i < d_i)$ are airport numbers specifying that a non-stop route is to be added between them. These pairs, (c_i, d_i) for $1 \le i \le k$, should be distinct and should not appear in the input.

If adding new non-stop routes can never enable Eulerian tours, output -1 in a line.

Sample Input 1	Sample Output 1
4 2	2
1 2	1 4
3 4	2 3

Sample Input 2	Sample Output 2
6 9	-1
1 4	
1 5	
1 6	
2 4	
2 5	
2 6	
3 4	
3 5	
3 6	

Sample Input 3	Sample Output 3
6 7	3
1 2	1 5
1 3	2 4
1 4	2 5
2 3	
4 5	
4 6	
5 6	

Sample Input 4	Sample Output 4
4 3	-1
2 3	
2 4	
3 4	

Sample Input 5	Sample Output 5
5 5	0
1 3	
1 4	
2 4	
2 5	
3 5	