ICPC — International Collegiate Programming Contest Asia Regional Contest, Yokohama, 2018–12–09

Problem I Ranks

Time Limit: 3 seconds

A finite field \mathbf{F}_2 consists of two elements: 0 and 1. Addition and multiplication on \mathbf{F}_2 are those on integers modulo two, as defined below.

+	0	1	×	0	1
0	0	1	0	0	0
1	1	0	1	0	1

A set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ over \mathbf{F}_2 with the same dimension is said to be *linearly independent* when, for $c_1, \ldots, c_k \in \mathbf{F}_2$, $c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k = \mathbf{0}$ is equivalent to $c_1 = \cdots = c_k = 0$, where $\mathbf{0}$ is the zero vector, the vector with all its elements being zero.

The rank of a matrix is the maximum cardinality of its linearly independent sets of column vectors. For example, the rank of the matrix $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ is two; the column vectors $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (the first and the third columns) are linearly independent while the set of all three column vectors is *not* linearly independent. Note that the rank is zero for the zero matrix.

Given the above definition of the rank of matrices, the following may be an intriguing question. How does a modification of an entry in a matrix change the rank of the matrix? To investigate this question, let us suppose that we are given a matrix A over \mathbf{F}_2 . For any indices i and j, let $A^{(ij)}$ be a matrix equivalent to A except that the (i, j) entry is flipped.

$$A_{kl}^{(ij)} = \begin{cases} A_{kl} + 1 & (k = i \text{ and } l = j) \\ A_{kl} & (\text{otherwise}) \end{cases}$$

In this problem, we are interested in the rank of the matrix $A^{(ij)}$. Let us denote the rank of A by r, and that of $A^{(ij)}$ by $r^{(ij)}$. Your task is to determine, for all (i, j) entries, the relation of ranks before and after flipping the entry out of the following possibilities: (i) $r^{(ij)} < r$, (ii) $r^{(ij)} = r$, or (iii) $r^{(ij)} > r$.

Input

The input consists of a single test case of the following format.

```
n m
A_{11} \dots A_{1m}
\vdots
A_{n1} \dots A_{nm}
```

n and m are the numbers of rows and columns in the matrix A, respectively $(1 \le n \le 1000, 1 \le m \le 1000)$. In the next n lines, the entries of A are listed without spaces in between. A_{ij} is the entry in the *i*-th row and *j*-th column, which is either 0 or 1.

Output

Output *n* lines, each consisting of *m* characters. The character in the *i*-th line at the *j*-th position must be either – (minus), 0 (zero), or + (plus). They correspond to the possibilities (i), (ii), and (iii) in the problem statement respectively.

Sample Input 1	Sample Output 1
2 3	-0-
001	-00
101	

Sample Input 2	Sample Output 2
54	0000
1111	0+++
1000	0+++
1000	0+++
1000	0+++
1000	

Sample Input 3	Sample Output 3
10 10	000-00000-
1000001001	0-00000-00
0000010100	00-00000-0
0000100010	+00000+000
0001000001	00-000000
001000010	0-0000000
010000100	000-0000-
1000001000	0-000-0-00
0000010000	00-0-000-0
0000100000	+00000+000
0001000001	

Sample Input 4	Sample Output 4
1 1	+
0	