
Problem H

The Still Embarrassed Cryptographer

The not so young any more, but still very promising
cryptographer Børge is implementing a new security module
for his company. There were a lot of problems with the old
module last time Børge was on holiday, as nobody could
understand his code. So his boss have ordered him to keep
this new module much simpler.

In this system the secret encryption key is an injective
function c from the alphabet onto itself, such that for a
string S = s1 . . . sm, we have crypt(S) = c(s1) . . . c(sm).
The secret decryption key c−1 has the property c−1(c(s)) =
s, and is used in the decryption crypt−1(T) = c−1(t1) . . . c−1(tm). Børge’s functions crypt()
and crypt−1() send each symbol with a Remote Procedure Call to where the secret keys
are stored, deep inside a mountain.

A problem is that cryptq(crypt(S)) = S for some q, and the eager cracker can
just keep on applying crypt() on the encrypted message until he gets a readable
message. To make the system totally safe, Børge wants to make crypt() throw a
SecurityExceptionInAmundsCodeReally if q is a small number. Help Børge implement
this function.

Input specifications

The first line of input gives 1 ≤ n ≤ 100, the number of test cases. Each test case consists
of two lines, containing original string S and the encrypted string T respectively, such
that crypt(S) = T . You have 1 ≤ |S| = |T | ≤ 1000. The strings are from the alphabet
“A”. . . “Z”. The encryption function c is different in each test case.

Output specifications

For each test case, output a line with the number q, or “mjau”, if this cannot be decided
just from S and T .

Sample input

3

CRYPTO

CPTOYR

A

A

A

B

Output for sample input

5

0

mjau

19

