Problem G

Sleeping at Work

You are at work. Unfortunately, there is a programming competition immediately after your working hours. In order to perform well, you need some sleep at work to regain as much energy as possible. Your workday is N minutes long, and each minute has an energy value, $e_{0}, e_{1}, \ldots, e_{N-1}$. Your sleep requirement is exactly M minutes, but you can only sleep for a maximum of R minutes in a row before your boss notices. There is a bonus if you sleep for several minutes in a row; the i-th minute in a row will have its energy value multiplied by i. For instance, if you sleep for three minutes having energy values of 10,10 and 9 , you will gain $10+2 \cdot 10+3 \cdot 9=57$ energy. After you have slept for M minutes, you are fully rested and cannot sleep any more
 that day. You have decided to write a computer program which calculates the maximum amount of energy you can gain during a given workday.

Input specifications

The first line of input contains a single integer T, the number of test cases to follow. Each test case begins with a line containing three integer numbers, N, the number of minutes in your workday, M, the sleep requirement in number of minutes, and R, the maximum number of minutes in a row you can sleep before your boss notices. Then follows a line containing N numbers, $e_{0}, e_{1}, \ldots, e_{N-1}$, each minute's energy value.

Output specifications

For each test case output one line containing a single number, the highest amount of energy that can be gained by sleeping a total of M minutes, or output impossible if it is not possible to get the required amount of sleep.

Notes and Constraints

- $0<T \leq 100$
- $0<N \leq 500$
- $0<M \leq 50$
- $0<R \leq 50$
- $0 \leq e_{i} \leq 100$
- You can only start and stop sleeping exactly when the minute indicator on the clock changes.

Sample input
2
1033
101096542144 1061
12345678910

1

Output for sample input
57
impossible57

