
Problem E

Ruben Spawns (Easy)

Being the head judge of a programming contest is no small
thing. As with everything good in life, there is that
inevitably long list of things that need to be done before
it can happen. Fortunately for Ruben, he has recently
acquired a machine that at the push of a button, can spawn
a small minion for him to do part of his work. He has also
hired an assistant to remind him to activate the machine.

There is one caveat with minions. If you have too many
of them, they might get lost. So, simply put, fewer is better.
After all, someone has to keep track of those minions. Each
minion spawned from the machine can work a set amount
of units, and then they are “spent” (there exists a recycling
machine, but it is hidden in a deep, dark forest somewhere).

The machine itself creates a given number of minions whose work capacities are
normally distributed with both µ and σ unknown. The number of minions the machine
can spawn in a given time interval is Poisson distributed with intensity λ, also unknown.

What we are interested in is knowing the minimum amount of times Ruben would
have to spawn a minion to be sure that all the work gets done. You are given a list of
how many work units each of the N minions can work for. The machine will break down
completely after having spawned N minions. The machine lets you choose which minion
you want spawn next from the list of possible minions, but you can only spawn each
once. All minions are unique in their own ways, but they might still have the same work
capacity.

Input specifications

The first line of the input consists of a single integer T , the number of test cases. Each
of the following T cases then consist of two lines. The first line has two integers: W ,
the number of work units Ruben needs completed, and M , the number of minions the
machine can spawn. Then follows a line with M integers Ci, representing how many work
units each minion can complete.

Output specifications

Output the minimum number of minions needed to complete the workload W , or output
“no rest for Ruben” (without the quotes). Please note that you need a capital r in
Ruben’s name.

13



Notes and Constraints

• 0 < T ≤ 50
• 0 < W ≤ 10000
• 0 < M ≤ 100
• 0 < Ci ≤ 100

Sample input

4

4 5

1 2 4 100 3

10 10

1 1 1 1 1 1 1 1 1 1

20 10

9 1 1 1 1 1 1 1 1 9

100 5

81 1 2 1 4

Output for sample input

1

10

4

no rest for Ruben

14


