The 2009 ACM Asia Programming Contest Wuhan Site sponsored by IBM hosted by Wuhan University

Problem B Box Relations Input: box.in

There are n boxes $C_{1}, C_{2}, \ldots, C_{n}$ in 3D space. The edges of the boxes are parallel to the x, y or z-axis. We provide some relations of the boxes, and your task is to construct a set of boxes satisfying all these relations.

There are four kinds of relations ($1 \leq i, j \leq n, i$ is different from j):
I I i j: The intersection volume of C_{i} and C_{j} is positive.
I X i j : The intersection volume is zero, and any point inside C_{i} has smaller x-coordinate than any point inside C_{j}.
I Y i j : The intersection volume is zero, and any point inside C_{i} has smaller y-coordinate than any point inside C_{j}.
I \quad Z i j : The intersection volume is zero, and any point inside C_{i} has smaller z-coordinate than any point inside C_{j}.

Input

There will be at most 30 test cases. Each case begins with a line containing two integers $n(1 \leq n \leq 1,000)$ and R $(0 \leq R \leq 100,000)$, the number of boxes and the number of relations. Each of the following R lines describes a relation, written in the format above. The last test case is followed by $n=R=0$, which should not be processed.

Output

For each test case, print the case number and either the word POSSIBLE or IMPOSSIBLE. If it's possible to construct the set of boxes, the i-th line of the following n lines contains six integers $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$, that means the i-th box is the set of points (x, y, z) satisfying $x_{1} \leq x \leq x_{2}, y_{1} \leq y \leq y_{2}, z_{1} \leq z \leq z_{2}$. The absolute values of $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$ should not exceed 1,000,000.

Print a blank line after the output of each test case.

Sample Input

Output for the Sample Input

32	Case 1: POSSIBLE
I 12	000222
X 23	$\begin{array}{lllllll}1 & 1 & 1 & 3 & 3 & 3\end{array}$
33	888999
$\begin{array}{llll}\text { Z } & 1\end{array}$	
Z 23	Case 2: IMPOSSIBLE
Z 31	
10	Case 3: POSSIBLE
00	000111

