E-Exponential Towers

The number 729 can be written as a power in several ways: $3^{6}, 9^{3}$ and 27^{2}. It can be written as 729^{1}, of course, but that does not count as a power. We want to go some steps further. To do so, it is convenient to use ' \sim ' for exponentiation, so we define $a^{\wedge} b=a^{b}$. The number 256 then can be also written as $2 \wedge 2^{\wedge} 3$, or as $4 \wedge 2 \wedge 2$. Recall that ' \sim ' is right associative, so $2^{\wedge} 2^{\wedge} 3$ means 2^(2^3).

We define a tower of powers of height k to be an expression of the form $a_{1}{ }^{\wedge} a_{2}{ }^{\wedge} a_{3}{ }^{\wedge} \ldots{ }^{\wedge} a_{k}$, with $k>1$, and integers $a_{i}>1$.

Given a tower of powers of height 3 , representing some integer n, how many towers of powers of height at least 3 represent n ?

Input

The input file contains several test cases, each on a separate line. Each test case has the form $a^{\wedge} b^{\wedge} c$, where a, b and c are integers, $1<a, b, c \leq 9585$.

Output

For each test case, print the number of ways the number $n=a^{\wedge} b^{\wedge} c$ can be represented as a tower of powers of height at least three.
The magic number 9585 is carefully chosen such that the output is always less than 2^{63}.

Example

input	output
$4^{\wedge} 2^{\wedge} 2$	2
$8^{\wedge} 12^{\wedge} 2$	10
$8192^{\wedge} 8192^{\wedge} 8192$	1258112
$2^{\wedge} 900^{\wedge} 576$	342025379

