# Problem B <br> Peragrams <br> Problem ID: peragrams 

Per recently learned about palindromes. Now he wants to tell us about it and also has more awesome scientific news to share with us.
"A palindrome is a word that is the same no matter whether you read it backward or forward", Per recently said in an interview. He continued: "For example, add is not a palindrome, because reading it backwards gives $d d a$ and it's actually not the same thing, you see. However, if we reorder the letters of the word, we can actually get a palindrome. Hence, we say that add is a Peragram, because it is an anagram of a palindrome".


Photo by Ross Beresford

Per gives us a more formal definition of Peragrams: "Like I said, if a word is an anagram of at least one palindrome, we call it a Peragram. And recall that an anagram of a word $w$ contains exactly the same letters as $w$, possibly in a different order."

## Task

Given a string, find the minimum number of letters you have to remove from it, so that the string becomes a Peragram.

## Input

Input consists of a string on a single line. The string will contain at least 1 and at most 1000 characters. The string will only contain lowercase letters $a-z$.

## Output

Output should consist of a single integer on a single line, the minimum number of characters that have to be removed from the string to make it a Peragram.

## Sample Input 1

## Sample Output 1

| abc | 2 |
| :--- | :--- |

## Sample Input 2

Sample Output 2

| aab | 0 |
| :--- | :--- |

