Problem H

You are playing the game Nudgémon, a common element of which is Nudgémon battles. In a battle, you and your opponent each start by sending out a Nudgémon of your choice, and then take turns attacking the opposing Nudgémon.

Each attack has a type (an integer between 1 and n), and the opposing Nudgémon also has either one or two types. Depending on these types, the attack will do different amounts of damage.

When an attack of type i hits a Nudgémon with single type j, the attack gets a damage multiplier $a(i, j)$, where a is a type matchup table consisting of entries in $\{0,0.5,1,2\}$. If it hits a Nudgémon with double types j and k, it gets a damage multiplier of $a(i, j) \cdot a(i, k)$.

Depending on the value v of the damage multiplier, the game will emit different messages:

$v=0$	It had no effect.	x
$0<v<1$	It's not very effective...	-
$v=1$	<no message>	$=$
$v>1$	It's super effective!	+

You are new to this game and do not know what the table a looks like. Trying to learn its first row, you have gathered some observations about the game's output when attacking various Nudgémon with attacks of type 1 . Now you are trying to reconstruct the first row in a way that is consistent with this data.

Input

The first line of input contains two integers n and $m\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 10^{5}\right)$, where n is the number of types and m is the number of observations.

Then follow m lines, each containing two integers i, j and a character $c(1 \leq i, j \leq n$ and c is one of $\mathrm{x},-,=$ or +), where c is the observed effect when attacking a Nudgémon with types i and j, as indicated in the table above. If $i=j$, the Nudgémon has just a single type.

Output

Output a single line with n characters, each either $\mathrm{x},-,=$ or + . The i th character should describe the effect of attacking a Nudgémon of type i with an attack of type 1 .

If there are multiple valid solutions, you may output any one of them. It is guaranteed that at least one solution exists.

Sample Input 1
Sample Output 1

5	5	
1	2	-
2	4	-
4	5	x
2	3	$=-+=x$
3	4	

