## Problem I. Equal Mod Segments

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 1.5 seconds |
| Memory limit: | 256 megabytes |

Given an array $a_{1}, a_{2}, \ldots, a_{n}$, consisting of $n$ positive integers. You need to find a number of pairs $(L, R)$ (where $L \leq R$ ) such that the following condition holds: $a_{L} \bmod a_{L+1} \bmod \ldots \bmod a_{R}=a_{R} \bmod$ $a_{R-1} \bmod \ldots \bmod a_{L}$, where mod is defined as operation of taking the remainder of the division.

## Input

The first line contains an integer $n$ - the size of the array.
The second line contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$ - the elements of the array.

$$
\begin{gathered}
1 \leq n \leq 10^{5} \\
1 \leq a_{i} \leq 3 \cdot 10^{5}
\end{gathered}
$$

## Output

Print a single integer - number of pairs $(L, R)$, satisfying the given condition.

## Examples

| standard input |  |  |
| :--- | ---: | :--- |
| 2 | 5 | 3 |
| 3 | 5 | 5 |

