Problem A. Where is the legend?

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Given an array *a* of *n* positive integers. In one operation, you can remove a number from the array *a*, if it is equal to the arithmetic mean of its neighbors. However, you can not remove the first and last numbers of the array. Formally, you can remove the number a_i , if $a_i = \frac{a_{i-1}+a_{i+1}}{2}$. For example, if you remove 6 from an array [1, 3, 6, 9, 4], the resulting array would be [1, 3, 9, 4].

What is the shortest possible length of the array you could get using the operation described above some number of times(maybe, zero)?

Input

The first line contains one integer $t \ (1 \le t \le 10^3)$ — the number of test cases.

The next $2 \cdot t$ lines are in the following pattern:

First line of each test case contains one number $n \ (3 \le n \le 3 \cdot 10^5)$ — the length of an array a.

The second line of each test case contains n numbers a_1, \ldots, a_n $(1 \le a_i \le 10^9, \text{ for each } i, \text{ where } 1 \le i \le n).$

It is guaranteed, that the sum of n across all test cases does not exceed $3 \cdot 10^5$.

Output

For each test case print one number — the shortest possible length of the array a, that you could get by using described operation.

Scoring

Let S be the sum of n over all test cases.

Subtask	Additional constraints	Score	Necessary subtasks
0	Examples	0	
1	$n \le 15, S \le 400$	14	0
2	$a_i = i$	13	
3	$a_i \leq 3$	9	
4	$n \le 300, S \le 1000$	17	1
5	$n \le 3000, S \le 10000$	18	4
6		29	2, 3, 5

Example

standard input	standard output
3	2
5	4
1 2 3 4 5	2
7	
1 3 5 6 7 8 10	
3	
1 1 1	

Note

For example, in the array [1, 2, 4], there are no possible operations, since $\frac{1+4}{2} = 2.5 \neq 2$.