Problem A. Where is the legend?

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Given an array a of n positive integers. In one operation, you can remove a number from the array a, if it is equal to the arithmetic mean of its neighbors. However, you can not remove the first and last numbers of the array. Formally, you can remove the number a_{i}, if $a_{i}=\frac{a_{i-1}+a_{i+1}}{2}$. For example, if you remove 6 from an array $[1,3,6,9,4]$, the resulting array would be $[1,3,9,4]$.
What is the shortest possible length of the array you could get using the operation described above some number of times(maybe, zero)?

Input

The first line contains one integer $t\left(1 \leq t \leq 10^{3}\right)$ - the number of test cases.
The next $2 \cdot t$ lines are in the following pattern:
First line of each test case contains one number $n\left(3 \leq n \leq 3 \cdot 10^{5}\right)$ - the length of an array a.
The second line of each test case contains n numbers $a_{1}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right.$, for each i, where $\left.1 \leq i \leq n\right)$. It is guaranteed, that the sum of n across all test cases does not exceed $3 \cdot 10^{5}$.

Output

For each test case print one number - the shortest possible length of the array a, that you could get by using described operation.

Scoring

Let S be the sum of n over all test cases.

Subtask	Additional constraints	Score	Necessary subtasks
0	Examples	0	-
1	$n \leq 15, S \leq 400$	14	0
2	$a_{i}=i$	13	-
3	$a_{i} \leq 3$	9	-
4	$n \leq 300, S \leq 1000$	17	1
5	$n \leq 3000, S \leq 10000$	18	4
6	-	29	$2,3,5$

Example

standard input	standard output
3	2
5	4
12345	2
7	
13567810	
3	
111	

Note

For example, in the array $[1,2,4]$, there are no possible operations, since $\frac{1+4}{2}=2.5 \neq 2$.

