Problem C
 New Maths

"Drat!" cursed Charles. "This stupid carry bar is not working in my Engine! I just tried to calculate the square of a number, but it's wrong; all of the carries are lost."
"Hmm," mused Ada, "arithmetic without carries! I wonder if I can figure out what your original input was, based on the result I see on the Engine."

Carryless addition, denoted by \oplus, is the same as normal addition, except any carries are ignored (in base 10). Thus, $37 \oplus 48$ is 75 , not 85 .

Carryless multiplication, denoted by \otimes, is performed using the schoolboy algorithm for multiplication, column by column, but the intermediate additions are calculated using carryless addition. More formally, Let $a_{m} a_{m-1} \ldots a_{1} a_{0}$ be the
 digits of a, where a_{0} is its least significant digit. Similarly define $b_{n} b_{n-1} \ldots b_{1} b_{0}$ be the digits of b. The digits of $c=a \otimes b$ are given by the following equation:

$$
c_{k}=\left(a_{0} b_{k} \oplus a_{1} b_{k-1} \oplus \cdots \oplus a_{k-1} b_{1} \oplus a_{k} b_{0}\right) \bmod 10
$$

where any a_{i} or b_{j} is considered zero if $i>m$ or $j>n$. For example, $9 \otimes 1234$ is $9876,90 \otimes 1234$ is 98760 , and $99 \otimes 1234$ is 97536 .

Given N, find the smallest positive integer a such that $a \otimes a=N$.

Input

The input consists of a single line with a positive integer N, with at most 25 digits and no leading zeros.

Output

Print, on a single line, the least positive number a such that $a \otimes a=N$. If there is no such a, print ' -1 ' instead.

Examples

Sample Input 1	Sample Output 1
6	4
Sample Input 2	Sample Output 2
149	17
Sample Input 3	Sample Output 3
123476544	11112
Sample Input 4	Sample Output 4
15	-1

