Problem F
 Derangement Rotations

Time Limit: 1

A Derangement is a permutation p of $1,2, \ldots, n$ where $p_{i} \neq i$ for all i from 1 to n.
A rotation of a sequence $a_{1}, a_{2}, \ldots, a_{n}$ with offset $k(1 \leq k \leq n)$ is equal to the sequence a_{k}, a_{k+1}, $\ldots, a_{n}, a_{1}, a_{2}, \ldots, a_{k-1}$. A sequence of length n has at most n distinct rotations.

Given a derangement D, let $f(D)$ denote the number of distinct rotations of D that are also derangements. For example, $f([2,1])=1, f([3,1,2])=2$.

Given n and a prime number p, count the number of derangements D of $1,2, \ldots, n$ such that $f(D)=n-2$, modulo p.

Input

The single line of input contains two integers $n\left(3 \leq n \leq 10^{6}\right)$ and $p\left(10^{8} \leq p \leq 10^{9}+7\right)$, where n is a permutation size, and p is a prime number.

Output

Output a single integer, which is the number of derangements D of size n with $f(D)=n-2$, modulo p.

Sample Input 1	Sample Output 1
31000000007	0

Sample Input 2
Sample Output 2

6999999937	20

