Arithmetic Decoding
 Problem ID: arithmeticdecoding

Arithmetic coding is a method to represent a message as a real number x such that $0 \leq x<1$. We will assume that the message consists only of uppercase 'A's and ' B 's. The two letters have associated probabilities p_{A} and $p_{B}=1-p_{A}$ such that $0<p_{A}<1$.

The current interval $[a, b)$ is initially set to $[0,1)$ and we will update this interval one letter at a time. To encode a letter, the current interval is divided into two subintervals as follows. Let $c=a+p_{A}(b-a)$. If the next letter is ' A ', $[a, c)$ becomes the current interval. Otherwise, the current interval is now $[c, b)$. This process is repeated for each letter in the message. If $[k, \ell)$ is the final interval, the encoded message is chosen to be k.

For example, if the original message is "ABAB" and $p_{A}=p_{B}=0.5$, the sequence of intervals encountered in the algorithm is

$$
[0,1) \xrightarrow{A}[0,0.5) \xrightarrow{B}[0.25,0.5) \xrightarrow{A}[0.25,0.375) \xrightarrow{B}[0.3125,0.375) .
$$

The encoded message is therefore 0.3125 , or 0.0101 in binary.
Given the length of the message, the probabilities, and the encoded message, determine the original message.

Input

The first line contains the integer $N(1 \leq N \leq 15)$, which is the length of the original message. The second line contains the integer $D(1 \leq D \leq 7)$, which indicates that $p_{A}=\frac{D}{8}$. The third line contains the binary representation of the encoded message. It is guaranteed that the binary representation of the encoded message starts with " 0 ." and contains at most $3 N+2$ characters.

It is guaranteed that the encoded message came from an initial message of length N consisting only of ' A ' and 'B' using this value of p_{A}.

Output

Display the original message.

Sample Input 1	Sample Output 1
4	ABAB
4	
0.0101	

Sample Input 2	Sample Output 2
6	ABBABA
5	
0.100100100100101	

