Folding a Cube
 Problem ID: foldingacube
 Time limit: 1 second

It is well known that a set of six unit squares that are attached together in a "cross" can be folded into a cube.

But what about other initial shapes? That is, given six unit squares that are attached together along some of their sides, can we form a unit cube by folding this arrangement?

Input

Input consists of 6 lines each containing 6 characters, describing the initial arrangement of unit squares. Each character is either a ., meaning it is empty, or a \# meaning it is a unit square.

There are precisely 6 occurrences of \# indicating the unit squares. These form a connected component, meaning it is possible to reach any \# from any other \# without touching a . by making only horizontal and vertical movements. Furthermore, there is no 2×2 subsquare consisting of only \#. That is, the pattern

```
##
##
```

does not appear in the input.

Output

If you can fold the unit squares into a cube, display can fold. Otherwise display cannot fold.

Sample Input 1 Sample Output 1

$\ldots \ldots$	cannot fold
$\ldots \ldots \ldots$	
\#\#\#\#	
$\ldots \ldots$.	
$\ldots \ldots$	

Sample Input 2

Sample Output 2

$\ldots \ldots$.	can fold
\#. . . .	
\#\#\#.	
\#...	
$\ldots \ldots$.	
$\ldots \ldots$.	

Sample Input 3	Sample Output 3
. . \#\#. .	cannot fold
. . . \#. .	
. . \#\#. .	
. . . \# . .	
.	

Sample Input 4	Sample Output 4
. . . .	can fold
. . \# .	
\ldots. . .	
. \#\#\# .	
. \# . . .	
. . . .	

