Problem D. Distinct Substrings

Time limit:	3 seconds
Memory limit:	512 megabytes

Diana bought a Long Random String Generator on some weird website. She planned to generate a long string s of length n and then use its contiguous substrings as passwords for other weird websites.

Soon she discovered that the generated string s of length n was not random at all, but rather a string p of length k repeated many times and then cut to length n. Thus, $s[i] = p[i \mod k]$ for all i from 0 to n - 1. Diana wonders how many different passwords she can get from the generated string. Help her find the number of distinct non-empty substrings in string s.

Input

The first line of the input contains a string p consisting of k lowercase English letters $(1 \le k \le 1000)$. The second line contains an integer n $(k \le n \le 10^9)$.

Output

Output the number of distinct non-empty substrings in s.

Examples

standard input	standard output
abba	20
7	
a	42
42	

Note