Problem D. Distinct Substrings

Time limit: $\quad 3$ seconds
Memory limit: $\quad 512$ megabytes
Diana bought a Long Random String Generator on some weird website. She planned to generate a long string s of length n and then use its contiguous substrings as passwords for other weird websites.

Soon she discovered that the generated string s of length n was not random at all, but rather a string p of length k repeated many times and then cut to length n. Thus, $s[i]=p[i \bmod k]$ for all i from 0 to $n-1$. Diana wonders how many different passwords she can get from the generated string. Help her find the number of distinct non-empty substrings in string s.

Input

The first line of the input contains a string p consisting of k lowercase English letters ($1 \leq k \leq 1000$). The second line contains an integer $n\left(k \leq n \leq 10^{9}\right)$.

Output

Output the number of distinct non-empty substrings in s.

Examples

standard input	standard output
abba 7	20
a	42

Note

In the first example, the generated string is abbaabb. It contains 20 distinct non-empty substrings: a, b, aa, ab, ba, bb, aab, abb, baa, bba, aabb, abba, baab, bbaa, abbaa, baabb, bbaab, abbaab, bbaabb, abbaabb.

